> THE
> SOLAR PARALLAX
> AND ITS
> RELATED CONSTANTS
> HARKNESS

CASE SCHOOL

 APPLIED ${ }^{\circ}$ SCIENCE

DEPARTMENT PHYSIES

Class 521.1
Shelf
Date
Accession 731

THE

SOLAR PARALLAX

ANI) ITS

RELATED CONSTANTS.

FIgURE AND DENSITY OF THE EARTH.

WM. HARKNESS,
PROFESSOR OF MATHEMATICS, U. S. NAVY.

DEPARTMENT OF PHYSICS
Case whisoor of Fipylied wiche
cleveland ohio
WASHINGTON:
GOVERNMENT PRINTING OFFICE,
I $S_{9} 1$

TABLE OF CONTENTS.

Раде.
Раде.

1. Introdnctory 1
2. Algebraic notation, and citation of anthorities 1
3. Relations between units of length 3
4. Size aud figure of the Earth 3
5. Length of the seconds pendulum 6
f. Length of the year 10
6. The eccontricity of the Earth's orbit, and the constint ($1+\mathcal{\mu}$) 11
7. The length of the month 12
8. The constants $\mu, m,\left(1+\varkappa^{\prime}\right), e_{3}, \gamma$ and I, pertaining to the Moon 16
9. Observed value of the parallactic inequality of the Moon 18
10. Observed value of the lunar incquality of the Earth 19
11. Observed valne of the lunar parallax 20
12. The constant of precession 22
13. The constant of nutation 25
14. The constant of aberration 25
15. The light equation 28
16. V, the velocity of light in vacuo 29
17. Masses of the planets 33
18. Trigonometrical determinations of the solar parallixx 51
19. General forms of the conditional equatious 56
20. The least square adjustment 64
21. Numerical values of the corrections by adjnstment 63
22. Additional formulæ for precession 73
23. The density, flattening, and moments of inertia of the Earth 89
24. Uncertainty in tho valuo of ε, and its effect upon tho other coustants. 102
25. Mass of the Moon from observations of the tides 112
26. A more comprehensive least square adjustment 121
27. The electric constant, v $1: 5$
28. Supplementary data 136
29. Summary of results 138
30. Concluding remarks 142
31. Bibliograpliy 146
Index 165

ON THE SOLAR PARALLAX AND ITS RELATED CONSTANTS.*

1.-INTRODUCTORY.

Hitherto it has been customary to endeavor to determine the solar parallax as if it were an independent constant, and the result is a mass of discordant values, all of which are more or less affected by constant errors, and none of which command anything like universal assent. But, in truth, the solar parallax is not an independent constant. On the contrary, it is entangled with the lunar parallax, the constants of precession and nutation, the parallactic inequality of the Moon, the lunar inequality of the Earth, the masses of the Earth and Moon, the ratio of the solar and lunar tides, the constant of aberration, the velocity of light, and the light equation; and according to the most elementary mathematical principles, it should be determined simultaneously with all these quantities, by means of a least square adjustment. No other method offers anything like so much promise of eliminating the ever present constant errors, and therefore an attempt will be made to develop it here. The equations connecting the quantities mentioned are known, but for the sake of completeness their derivation will be given. The theory of these equations and the discussion of the numerical quantities which they involve are entirely distinct subjects, and as clearness will be gained by separating them, we will begin by investigating the numerical values, both of the constants, and of the quantities to be adjusted.

2.-ALGEBRAIC NOTATION, AND CITATION OF AUTHORITIES.

Except where otherwise stated, the following notation will be employed in algebraic formulx:
$a=$ equatorial semi-axis of the globe of the Earth, if that body is regarded as a spheroid; or major equatorial semi-axis, if it is regarded as an ellipsoid.
$a^{\prime}=$ minor equatorial semi-axis of the Earth, when that body is regarded as an ellipsoid.
$b=$ polar semi-axis of the Earth.
$a_{1}=$ that distance between the Earth and the Sun which would satisfy Kepler's third law.

[^0]$a_{2}=$ that distance between the Earth and the Moon which would satisfy Kepler's third law.
$\mathrm{E}=$ the combined mass of the Earth and Moon.
$\mathrm{E}^{\prime}=$ the mass of the Earth, excluding the Moon.
$e=$ eccentricity of the globe of the Earth.
$e_{1}=$ eccentricity of the Larth's orbit.
$e_{2}=$ eccentricity of the Moon's orbit.
$g=o b s e r v e d ~ f o r c e ~ o f ~ g r a v i t y ~ a t ~ a ~ s p e c i f i e d ~ p o i n t ~ u p o n ~ t h e ~ E a r t h ' s ~ s u r f a c e . ~$
I = inclination of the Moon's orbit to the plane of the ecliptic.
$k=$ Gauss's constant for the solar system.
$\mathrm{L}=$ constant of the Earth's lunar inequality.
$l=$ length of a simple pendulum vibrating in the time t.
MI = mass of the Moon.
$m=$ ratio of the mean motions of the Sun and Moon.
d $=$ the constant of nutation.
$\mathscr{E}=$ the constant of luni-solar precession.
$\mathrm{P}=$ the constant of lunar parallax.
$p=$ the constant of solar parallax.
$Q=$ the parallactic inequality of the Moon.
$r=$ that ralue of the mean distance from the Earth to the Sun which is adopted in the solar tables.
$r_{1}=$ that value of the mean distance from the Earth to the Moon which is adopted in the lunar tables.
$S=$ mass of the Sun.
$s^{\prime}=$ geocentric latitude of the Moon.
$\mathrm{T}=$ length of the sidereal year, expressed in seconds of mean time.
$\mathrm{T}_{1}=$ length of the sidereal month, expressed in seconds of mean time.
$t=$ time .
$t_{1}=$ number of mean solar seconds in a sidereal day.
$\mathrm{V}=$ the velocity of light per second of mean time.
$\alpha=$ the constant of aberration.
$\gamma=$ Delaunay's constant, which is $\sin \frac{1}{2}$ (inclination of lunar orbit to plane of ecliptic).
$\varepsilon=(a-b) / a=$ the quantity variously designated as the ellipticity, compression, or flattening of the Earth.
$\theta=$ the time taken by light to traverse the mean radins of the Earth's orbit.
$u=$ a constant, such that $a_{1}=r(1+x)$
$x^{\prime}=$ a constant, such that $\alpha_{2}=r_{1}\left(1+x^{\prime}\right)$
$\mu=$ regression of Moon's node, relatively to the line of equinoxes, in $365 \frac{1}{4}$ days.
$v=$ the heliocentric longitude of the Earth.
$\nu^{\prime}=$ the geocentric longitude of the Moon.
$\rho=$ a factor, varying with the latitude, such that the radius of the globe of the Earth at latitude φ is $a \rho$.
$\sigma=$ centrifugal force at latitude φ, divided by gravity at the same latitude.
$\mathcal{P}=$ geographic latitude .
$\varphi^{\prime}=$ geocentric latitude.
$\psi=$ the luni-solar precession.
$\psi_{1}=$ the general precession.
$\omega_{0}=$ the mean obliquity of the fixed ecliptic at the initial epoch.
ω = the obliquity of the fixed ecliptic at the time t.
$\omega_{1}=$ the obliquity of the moving ecliptic at the time t.
For a list of the principal works consulted in the preparation of the present paper, and an explanation of the method by which they are cited in the foot-notes, the reader is referred to the section on bibliography, pages 146-165.

3.-RELATIONS BETIVEEN UNITS OF LENGTH.

For interchanging the various units of length employed by different autlors, the following ratios, based upon Gen. A. R. Clarke's determinations,* will be used throughout this paper:

I meter	$=3.28086933$ feet	0.515988934
I kilometer	$=0.621376767$ mile	9.79335501 I
I toise	$=6.39453348$ feet	0.805808865
I toise	$=1.949036318$ meters	0.28981993 I
I Paris line	$=0.002255829072$ meter	7353306 I 89
I statute mile	$=1.60932956$ I kilometers	0.206644989
I English inch	$=0.025399772$ meter	8.404829820

4.-SIZE AND FIGURE OF THE EARTH.

When the Earth is regarded as a spheroid, let a be its equatorial and b its polar semi-axis; and when it is regarded as an ellipsoid, let a and a^{\prime} be respectively its major and minor equatorial, and b its polar semi-axis. Then the flattening will be given by the formula

$$
\begin{equation*}
\varepsilon=\frac{a-b}{a} \tag{1}
\end{equation*}
$$

and the ratio of the axes will be

$$
\begin{equation*}
a: b=\frac{\mathrm{I}}{\varepsilon}: \frac{\mathrm{I}}{\varepsilon}-\mathrm{I} \tag{2}
\end{equation*}
$$

In 1799 Méchain and Delambre found from a combination of the are of $9^{\circ} 40^{\prime}$ which they had measured between Dunkerque and Barcelona with the are of $3^{\circ} \mathrm{o7}^{\prime}$ measured in Peru by Bouguer and La Condamine \dagger

Log. a (in meters) $=6.8045305074$
Log. b (in meters) $=6.8032282744$
Whence

$$
\begin{aligned}
& a=6375738.66 \text { meters }=20917965 \text { feet } \\
& l=6356649.63 \text { meters }=20855337 \text { feet } \\
& \varepsilon=1 / 334
\end{aligned}
$$

In 1830 , from fonteen meridional ares having an amplitude of $59^{\circ} 29^{\prime}$, and four arcs of parallel having an amplitude of $22^{\circ} 41^{\prime}$, Sir (then Professor) George B. Arry found *

$$
\begin{aligned}
& a=20923713 \text { feet } \\
& b=20853810 \text { feet } \\
& \varepsilon=1 / 299.3249
\end{aligned}
$$

In 184 r , from ten meridional arcs having a total amplitude of $50^{\circ} 36^{\prime}$, to which he applied a more rigorous analysis than had before been used, Besser found \dagger

$$
\begin{aligned}
& a=3272077^{\circ} 14 \text { toises }=20923407 \text { feet } \\
& b=3261139.33 \text { toises }=20853465 \text { feet } \\
& \varepsilon=1 / 299^{\circ 1} 529
\end{aligned}
$$

In 1858, from a discussion of eight meridional arcs having a total amplitude of 67° o8', General (then Captain) A. R. Clarke found, when the curvature of the meridians was not restricted to an elliptic form \ddagger

$$
\begin{aligned}
& a=20927197 \pm 385 \text { feet } \\
& b=20855493 \pm 257 \text { feet } \\
& \varepsilon=1 / 291 \cdot 8554
\end{aligned}
$$

And when the curvature was restricted to an elliptic form§

$$
\begin{aligned}
& a=20926348 \pm 186 \text { feet } \\
& b=20855233 \pm 239 \text { feet } \\
& \varepsilon=1 / 294.2607
\end{aligned}
$$

In 1859 General T. F. de Schubert advanced the idea that the well-known discordances between the astronomical and geodetic differences of latitude and longitude of points upon the Earth's surface arise mainly from the assumption that the Earth is a spheroid, when in truth it is an ellipsoid; and, in accordance with that hypothesis, he found from eight meridional ares having a total amplitude of $72^{\circ} 37^{\prime} \|$

$$
\begin{aligned}
& a=3272671 \cdot 5 \text { toises }=20927207 \text { feet } \\
& u^{\prime}=3272303.2 \text { toises }=20924852 \text { feet } \\
& b=32614679 \text { toises }=20855566 \text { feet }
\end{aligned}
$$

In i860 General A. R. Clarke repeated General de Schubert's investigation by applying a much more exact analysis to five meridional ares having a total amplitude of $76^{\circ} 35^{\prime}$. He found \mathbb{I}

$$
\begin{aligned}
a & =20926485 \text { feet } \\
a^{\prime} & =2092 \mathrm{I} 77 \text { feet } \\
b & =20853768 \pm 953 \text { feet }
\end{aligned}
$$

[^1]In i 866 the comparisons made at Southampton showed that the hitherto accepter relations of the principal standards of length were slightly erroncous, and to correct the error thence arising General Clarke recomputed the axes last given, and found*

$$
\begin{aligned}
& a=20926350 \text { feet } \\
& a^{\prime}=20919972 \text { feet } \\
& b=20853429 \text { feet }
\end{aligned}
$$

By modifying his equations so as to make them represent a spheroid, he found from the same data \dagger

$$
\begin{aligned}
& a=20926062 \text { feet } \\
& b=20855 \text { I } 12 \text { feet } \\
& \varepsilon=1 / 2949784
\end{aligned}
$$

In 1878 the serious uncertainty respecting the unit of length employed by Colonel Lambton in the measurement of the southern half of the Indian meridional are had been remedied by a complete remeasurement of that part of the triangulation; the latitudes of many stations in it lad been determined; the length of the are had been increased from $21^{\circ} 21^{\prime}$ to $23^{\circ} 50^{\prime}$; and an are of longitude extending through $10^{\circ} 28^{\prime}$ had been measured. 'The data available for determining the size and figure of the Earth were then the Russian arc of $25^{\circ} 20^{\prime}$, the Anglo-French arc of $22^{\circ} 10^{\prime}$, the Indian meridional arc of $23^{\circ} 50^{\prime}$, the Indian longitudinal arc of $10^{\circ} 28^{\prime}$, the Cape are of $4^{\circ} 37^{\prime}$, and the Peruvian are of $3^{\circ} 07^{\prime}$. From these six arcs, having a total amplitude of $89^{\circ} 32^{\prime}$, General (then Colonel) Clarke found \ddagger

$$
\begin{aligned}
a & =20926629 \text { feet } \\
a^{\prime} & =20925 \text { 105 feet } \\
b & =20854477 \text { feet }
\end{aligned}
$$

In I880, after considering the ellipsoidal theory, and calling special attention to the fact that sufficient data are not yet available for fixing definitively the form of the Earth, General Clarke reverted to the theory of a spheroid, and found from the arcs he had employed in $1878 \$$

$$
\begin{equation*}
a=20926202 \text { feet } \quad b=20854895 \text { feet } \tag{3}
\end{equation*}
$$

These last values will be adopted in the present paper. From them we have

$$
\begin{align*}
& \varepsilon=\frac{a-b}{a}=\frac{1}{2934663} \tag{4}\\
& c^{2}=\frac{a^{2}-l^{2}}{a^{2}}=0.006803481019 \tag{5}\\
& \tan \phi^{\prime}=\frac{l^{2}}{a^{2}} \tan \varphi=\left(1-c^{2}\right) \tan \varphi=0.993196519 \tan \varphi \tag{6}\\
& \rho^{2}=\frac{1-e^{2}\left(2-e^{2}\right) \sin ^{2} \phi}{1-c^{2} \sin ^{2} \phi}=\frac{\cos \varphi}{\cos \varphi^{\prime} \cos \left(\varphi-\varphi^{\prime}\right)} \tag{7}\\
&{ }^{*}{ }_{23}, \text { p. } 285 .
\end{align*}
$$

And with $\sin \varphi=\sqrt{ } \frac{1}{3}$

$$
\begin{equation*}
\varphi=35^{\circ} 15^{\prime} 51^{\circ} 79^{\prime \prime} \quad \phi^{\prime}=35^{\circ} 04^{\prime} 48 \cdot 76^{\prime \prime} \quad \rho^{2}=0.997742482 \tag{8}
\end{equation*}
$$

5.-LENGTH OF THE SECONDS PENDULUM.

Let l be the length of the simple pendulum which beats seconds of mean solar time when vibrating through an infinitely small are, in vacuo, at the level of the sea, in latitude φ. For determining the value of l the following data are available:

In I 799 , from observations made at 15 stations, whose latitudes ranged from $+67^{\circ} 05^{\prime}$ to $-33^{\circ} 56^{\prime}$, the whole combined in such a way as to make the absolute length of the pendulum depend solely upon Borda's measurements at the Paris Observatory, La Place found*

$$
l=0.739502+0.004208 \sin ^{2} \varphi \text { meter }
$$

But this is the length of the decimal pendulum making 100000 vibrations in a mean solar day. To reduce it to the sexagesimal pendulum making 86400 vibrations, it must be multiplied by

$$
\left\{\frac{1000}{864}\right\}^{2}=1339591906
$$

and then it becomes

$$
l=0.990631+0.005637 \sin ^{2} \varphi \text { meter }
$$

In 1816, from observations made at 3 I stations, whose latitudes ranged from $+74^{\circ} 53^{\prime}$ to $-51^{\circ} 21^{\prime}$, Mathieu found, for the decimal pendulum, \dagger

$$
l=0.739586+0.0040806 \sin ^{2} \varphi \text { meter }
$$

which becomes for the sexagesimal pendulum

$$
l=0.990743+0.005466 \sin ^{2} \varphi \text { meter }
$$

In 182 I, from observations at 8 stations, situated in France and Scotland, between latitudes $+38^{\circ} 40^{\prime}$ and $+60^{\circ} 45^{\prime}$, Bот found, for the decimal pendulum, \ddagger

$$
l=0.739687686+0.003986392 \sin ^{2} \varphi \text { meter }
$$

which becomes for the sexagesimal pendulum

$$
l=0.990880+0.005340 \sin ^{2} \varphi \text { meter }
$$

In 1825, from his own observations at is stations having latitudes ranging from $+79^{\circ} 50^{\prime}$ to - $12^{\circ} 59^{\prime}$, Captain (afterwards General Sir) Edrard Sabine found §

$$
\begin{aligned}
l & =3901568+0.202 \text { I } 3 \sin ^{2} \varphi \text { English inches } \\
& =0.990989+0.005 \text { I } 34 \sin ^{2} \varphi \text { meter }
\end{aligned}
$$

[^2]And from a combination of his own stations, those of the British survey, and those of the French are; in all 25 stations, having latitudes ranging from $+79^{\circ} 50^{\prime}$ to $-12^{\circ} 59^{\prime}$, he found

$$
\begin{aligned}
l & =39.01520+0.20245 \sin ^{2} \varphi \text { inches } \\
& =0.990977+0.005142 \sin ^{2} \varphi \text { meter }
\end{aligned}
$$

In 1827, from observations made at 41 stations, whose latitudes ranged from $+79^{\circ} 50^{\prime}$ to $-51^{\circ} 35^{\prime}$, ML. Saigey found*

$$
l=0.991026+0.005072 \sin ^{2} \varphi \text { meter }
$$

In 1829, from observations made at 5 stations, whose latitudes ranged from 0° to $+67^{\circ} 04^{\prime}$, Pontécoulant found \dagger

$$
l=0.990555+0.005679 \sin ^{2} \varphi \text { meter }
$$

In 1830 , from observations made at 49 stations, whose latitudes ranged from $+79^{\circ} 50^{\prime}$ to $-51^{\circ} 35^{\prime}$, Sir (then Professor) George B. Airy found \ddagger

$$
\begin{aligned}
l & =39.01677+0.20027 \sin ^{2} \varphi \text { inches } \\
& =0.991017+0.005087 \sin ^{2} \varphi \text { meter }
\end{aligned}
$$

In 1833, by a process which is not clearly described, but which seems to have consisted in making the absolute length of the pendulum depend upon the experiments of Borda at the Paris Observatory, while the coefficient of $\cos 2 \varphi$ was made to depend upon the compression of the Earth, assumed to be $1 / 288$, Poisson found $\$$

$$
l=0.993512(1-0.002588 \cos 2 \varphi) \text { meter }
$$

To pass from the form

$$
l=a(1-b \cos 2 \varphi)
$$

to the form

$$
l=\alpha+\beta \sin ^{2} \varphi
$$

we have

$$
\alpha=a(1-b) \quad \beta=2 a b
$$

and therefore Poisson's formula is equivalent to

$$
l=0.990941+0.005142 \sin ^{2} \varphi \text { meter }
$$

In 1869, from observations made at 51 stations, whose latitudes ranged from $+79^{\circ} 50^{\prime}$ to $-51^{\circ} 35^{\prime}$, Unferdinger found \|

Log. $l($ in Paris lines $)=2.6427568+[7.35147] \sin ^{2} \varphi+[5.3198] \sin ^{4} \varphi$

$$
+[3.457] \sin ^{6} \varphi
$$

[^3]In order to reduce this to the standard form, let us assume

$$
\begin{equation*}
l=439.2923+x+(2.2940+y) \sin ^{2} \varphi \tag{9}
\end{equation*}
$$

and then, by making φ successively equal to $0^{\circ}, 20^{\circ}, 40^{\circ}, 60^{\circ}$, and 80°, and comparing the resulting values of l with those given by Unferdinger's expression, we shall obtain the observation equations

$$
\begin{aligned}
& \mathrm{o}=x+0.0000 y-32 \\
& \mathrm{o}=x+0.1170-10 \\
& \mathrm{o}=x+0.4132+12 \\
& \mathrm{o}=x+0.7500-22 \\
& \mathrm{o}=x+0.9698-78
\end{aligned}
$$

where the absolute terms are in units of the fourth decimal place. The resulting normal equations are

$$
\begin{aligned}
& 0=+5.0000 x+2.2500 y-130.0000 \\
& 0=+2.2500+1.6874-88.3560
\end{aligned}
$$

Whence

$$
x=+6.093057 \quad y=+44.237654
$$

and by substitution in (9)

$$
\begin{aligned}
l & =439.2929+2.29842 \sin ^{2} \varphi \text { Paris lines } \\
& =0.990970+0.005 \text { I85 } \sin ^{2} \varphi \text { meter }
\end{aligned}
$$

In 1884, from observations made at 123 stations, whose latitudes ranged from $+79^{\circ} 50^{\prime}$ to $-62^{\circ} 5^{\prime}$, Helmert found*

$$
\begin{aligned}
l & =0.990918\left[1+(0.005310 \pm 14) \sin ^{2} \varphi\right] \text { meter } \\
& =0.990918+(0.005262 \pm 14) \sin ^{2} \varphi \text { meter }
\end{aligned}
$$

For convenience of reference the preceding results are collected in Table I. In the case of Unferdinger's formula, the value of l for latitude 45° was computed from his original logarithmic expression, and not from that in the third column of the table.

Table I.-Formulee for the Length of the Seconds Pendulum.

Date.	Author.	l in meters.	1 for $\phi=45^{\circ}$
1799	La Place.	$0.990631+0.005637 \sin ^{2} \varphi$	0.993450
1816	Mathieu .	990743 5466	476
1821	Biot	-990 880 5340	550
1825	Sabine	-990977 5142	54^{8}
1827	Saigey	.991026 5072	562
1829	Pontécoulant.	'990555 5679	395
1830	Airy	-991017 7087	560
1833	Poisson	9909415142	512
1869	Unferdinger	-990970 5185	554
1884	Helmert.	$0.990918+0.005262 \sin ^{2} \varphi$	0.993549

*14, II Teil, p. 24 I.

A glance at the table shows that among the various authorities the range in the length of the pendulum is nearly three times greater at the equator than at latitude 45°; and that was to be expected, because most of the observations have been made within the temperate zone. Judging from the data upon which they are based, the formule of Sabine, Saigey, Airy, Unferdinger, and Helmert seem the most trustworthy, and their arithmetical mean gives

$$
\begin{equation*}
l=0.9935546 \text { meter at lat. } 45^{\circ} \tag{10}
\end{equation*}
$$

which is probably not in error by so much as oor of a millimeter.
General Clarke's proof that the ellipticity of the Earth resulting from pendulum obserrations does not differ sensibly from that obtained from terrestrial measurements,* would be more satisfactory if he had used a more exact ralue of the ratio of the force of gravity to the Earth's centrifugal force, but as his contention seems likely to prove correct in the end, we will preserve the consistency of our data by deriving the coefficient of $\sin ^{2} \varphi$ through Clamaut's theorem. The theoretical expression connecting the length of the pendulum in any latitude with the size and figure of the Earth is \dagger

$$
\begin{equation*}
l=l_{0}\left\{1+\left(\frac{10 a}{l_{0} t_{1}{ }^{2}}-\frac{a-b}{a}\right) \sin ^{2} \varphi\right\} \tag{II}
\end{equation*}
$$

where l_{0} is the length of the pendulum at the equator, and t_{1} is the number of mean solar seconds in a sidereal day. Whence, by putting

$$
l=l_{0}+\mathrm{B} \sin ^{2} \varphi
$$

we have

$$
\begin{equation*}
\mathrm{B}=\frac{10 a}{t_{1}^{2}}-\frac{l_{0}(a-b)}{a} \tag{12}
\end{equation*}
$$

With $l_{0}=3.251169$ feet; $t_{1}=86164^{\circ} 10^{s}$, from (17); and the values of a and b marked (3); formula (12) gives

$$
\mathrm{B}=0.017108 \text { feet }=0.0052144 \text { meter }
$$

and by the combination of that result with (io), we obtain definitively

$$
\begin{align*}
l & =0.990947+0.005214 \sin ^{2} \varphi \text { mete. } \tag{13}\\
& =3^{.2511} 69+0.017108 \sin ^{2} \varphi \text { feet }
\end{align*}
$$

With $\sin ^{2} \phi=5 / 3$, formula (13) gives

$$
\begin{equation*}
l=3.256872 \text { Englislı fect. } \tag{14}
\end{equation*}
$$

6.-LENGTH OF THE YEAR.

If we put m for the quantity by which the Sun's mean sidereal motion in 3654 days exceeds 360°, then the length of the sidereal year will be given by the expression

$$
\begin{equation*}
\mathrm{T}=365^{\frac{1}{4}}\left\{1-\frac{m}{360^{\circ}}+\left(\frac{m}{360^{\circ}}\right)^{2}-\text { etc. }\right\} \text { days } \tag{15}
\end{equation*}
$$

According to Hansen and Olufsen,* $m=-22.56009^{\prime \prime}$; whence, by formula (15)

$$
T=365^{2} 25^{6} 35^{8} 192 \text { days }=365^{d} 06^{\mathrm{h}} 09^{\mathrm{m}} 09.3478^{\mathrm{s}}
$$

According to Le Verrier the mean sidereal motion of the Sun in $365 \frac{1}{4}$ days is \dagger I $295977.38234^{\prime \prime}+0.0603^{\prime \prime}$. Whence, $m=-2255736^{\prime \prime}$; and by formula (15)

$$
T=365^{.256} 357422 \text { days }=365^{d} 06^{\mathrm{h}} 09^{\mathrm{m}} 09^{.2812^{8}}
$$

As the perturbations of the Earth are not taken account of in precisely the same way by Hansen and Olufsen and by Le Verrier, the resulting values of the Sun's mean sidereal motion given by these two authorities are not rigorously comparable, but the systematic difference is very small. Neglecting it, we take the mean of the two values of T just found, and thus obtain for the length of the sidereal year, expressed in mean solar time

$$
\begin{equation*}
T=365^{2} 25635781 \text { days }=365^{\mathrm{d}} 06^{\mathrm{h}} 09^{\mathrm{m}} 09.314^{\mathrm{s}}=3155^{8} 149.314 \text { seconds } \tag{16}
\end{equation*}
$$

And the number of mean solar seconds in a sidereal day is

$$
\begin{equation*}
t_{1}=86400^{8} \times \frac{365^{.256} 3578}{366.2563578}=8616409965^{8} \tag{17}
\end{equation*}
$$

If we put

$$
\begin{equation*}
m+\psi_{1}=a+b t \tag{18}
\end{equation*}
$$

where ψ_{1} is the secular part of the general precession, the expression for the length of the tropical year will be

$$
\mathrm{T}^{\prime}=365^{\frac{1}{\mathrm{~d}}}\left\{\begin{array}{l}
+\mathrm{I}-\frac{a}{360^{\circ}}+\left(\frac{a}{360^{\circ}}\right)^{2}-\text { etc. } \tag{19}\\
-\left(\frac{1}{360^{\circ}}-\frac{2 a}{\left(360^{\circ}\right)^{2}}\right) b t+\text { etc. }
\end{array}\right\}
$$

Taking for m the mean of the values given respectively by Hansen and Olursen, and by Le Verrier, namely,

$$
\frac{m=-\frac{1}{2}\left(22.56009^{\prime \prime}+22.55736^{\prime \prime}\right)=-22.55872^{\prime \prime}}{*_{40, \text { p. 1. }}^{\dagger 4 \mathrm{r}, \text { pp. } 52 \text { and } 98 .}}
$$

and putting

$$
\psi_{1}=+50^{.23622^{\prime \prime}}+0.022044^{\prime \prime}\left(\frac{t-1850}{100}\right)
$$

we have

$$
m+\psi_{1}=+27.67750^{\prime \prime}+0.022044^{\prime \prime}\left(\frac{t-1850}{100}\right)
$$

Whence, by formula (i9),

$$
\begin{align*}
\mathrm{T}^{\prime} & =365^{.242} 199853^{\mathrm{d}}-0.0000062124^{\mathrm{d}}\left(\frac{t-1850}{100}\right) \tag{20}\\
& =365^{\mathrm{d}} 05^{\mathrm{h}} 48^{\mathrm{m}} 46.067^{\circ}-0.53675^{\mathrm{s}}\left(\frac{t-1850}{100}\right)
\end{align*}
$$

The variation in the length of the sidereal or tropical year produced by a small change in the adopted value of m, formula (15), or a, formula (19), may be readily found from one or other of the expressions

$$
\begin{align*}
d \mathrm{~T} & =-24.35 d m \\
d \mathrm{~T}^{\prime} & =-24.35 d a \tag{21}
\end{align*}
$$

where $d \mathrm{~T}$ and $d \mathrm{~T}^{\prime}$ are in seconds of time, and $d m$ and $d a$ in seconds of arc.

7.-THE ECCENTRICITY OF THE EARTH'S ORBIT AND THE CONSTANT $(+x)$.

In their Tables du Soleil, published in 1853, Hansen and Olufsen gave for the epoch 18500 ,* ${ }^{*} e_{1}=001677120$; but in his Darlegung, published in 1862 , Hansen gave for the epoch $18000, \dagger e_{1}=0.01679226$ Using the co-efficients of (23) to bring the latter result up to the epoch $1850^{\circ} 0$, it becomes

$$
\begin{equation*}
e_{1}=0.016771035 \tag{22}
\end{equation*}
$$

In 1858 Le Verrier gave \ddagger

$$
\begin{aligned}
e_{1}=3459.28^{\prime \prime} & -0.08755^{\prime \prime}(t-1850) \\
& -0.000282^{\prime \prime}\left(\frac{t-1850}{100}\right)^{2}
\end{aligned}
$$

or, in parts of radius

$$
\begin{align*}
e_{1}=0.016771063 & -0.0000004245(t-1850) \\
& -0.000000001367\left(\frac{t-1850}{100}\right)^{2} \tag{23}
\end{align*}
$$

Adopting the mean of (22) and (23), we have for the epoch 1850.0

$$
\begin{equation*}
e_{1}=0.016771049 \tag{24}
\end{equation*}
$$

According to Le Verrier*

$$
r=a_{1}\left(1+\frac{2 \sigma}{3 n}\right)
$$

and as we have put

$$
a_{1}=r(1+x)
$$

it follows that

$$
I+\varkappa=\frac{1}{1+\frac{2 \sigma}{3 n}}
$$

Here n is the Earth's mean sidereal motion, and σ is a quantity depending upon the perturbations of that motion by the other planets. For the numerical values of these constants Le Verrier found \dagger

$$
\log \cdot n=6 . \text { II } 2660 \quad \sigma=+2.5067^{\prime \prime}
$$

Whence

$$
\mathrm{I}+\frac{2 \sigma}{2 n}=\mathrm{r} \cdot 00000 \mathrm{I} 2895
$$

and

$$
\begin{equation*}
1+x=0.999998710 \tag{25}
\end{equation*}
$$

8.-LENGTH OF THE MONTH.

The best authorities for the data from which to derive the length of the month are Airy, Marsev, and Newcomb.

The following notation will be employed:
$g=$ mean anomaly of the Moon.
$g^{\prime}=$ mean anomaly of the Sun.
$\omega=$ distance of the lunar perigee from the Moon's ascending node.
$\omega^{\prime}=$ distance of the solar perigee from the Moon's ascending node.
$\Theta=$ supplement of the longitude of the Moon's ascending node.
$\psi_{1}=$ the secular part of the general precession.
$\chi=$ sidereal movement of the solar perigee in $365 \frac{1}{4}$ days.
$n^{\prime \prime}=$ the Moon's mean sidereal motion in $365 \frac{1}{4}$ days.
$n_{1}^{\prime \prime}=$ the Moon's mean synodical motion in $365 \frac{1}{\frac{1}{4}}$ days.
$n_{2}^{\prime \prime}=$ the Moon's mean tropical motion in $365 \frac{1}{4}$ days.
$n_{3}{ }^{\prime \prime}=$ the Moon's mean nodical motion in $365 \frac{1}{4}$ days.
$n_{4}{ }^{\prime \prime}=$ the Moon's mean anomalistic motion in $365 \frac{1}{4}$ days.

The mean motion of the Moon used by Damoisian cau best be formen by taking from his T'able II* the mean longitudes for the years - 300 and -2300 and dividing their difference by 2000 . The resulting mean tropical motion in $365 \frac{1}{4}$ days is

$$
5347420869125 \text { centesimal degrees }
$$

or, expressed in sexagesimal seconds, of which there are 3240 in each centesimal degree, $17325643.6160^{\prime \prime}$. To that motion Airy found the correction $+0.596^{\prime \prime} ; \dagger$ and as he used Bessel's value of the precession, which for the epoch 18000 is $50^{\circ 2235^{\prime \prime}}$, his value of the mean sidereal motion of the Moon in $365 \frac{1}{4}$ days is

$$
17325643^{\circ} 6160^{\prime \prime}-50.2235^{\prime \prime}+0.596^{\prime \prime}=17325593.9885^{\prime \prime}
$$

and adding the secular acceleration \ddagger

$$
\begin{equation*}
n^{\prime \prime}=17325593.9858^{\prime \prime}+0.2164^{\prime \prime}\left(\frac{t-1800}{100}\right) \tag{26}
\end{equation*}
$$

It is easily seen that

$$
\begin{equation*}
n^{\prime \prime}=\frac{d}{d t}\left(g+\omega-\Theta-\psi_{1}\right) \tag{27}
\end{equation*}
$$

and also

$$
\begin{equation*}
n^{\prime \prime}=\frac{d}{d t}\left(y+\omega-\omega^{\prime}+\chi\right) \tag{28}
\end{equation*}
$$

But when the numerical values of the quantities in the right hand members of these equations are substituted from Hansen's Tables de la Lune, pp. 15 and 16, a discordance appears in the terms involving the square of the time; equation (27) giving for the coefficient $+0.00033260^{\prime \prime}$, while equation (28) gives $+0.00040419^{\prime \prime}$. Taking the mean of these two numbers, Hansen's value of the mean sidereal motion of the Moon in $365 \frac{1}{4}$ days is

$$
\begin{align*}
n^{\prime \prime}=17325593.973 \mathrm{I}^{\prime \prime} & +0.24360^{\prime \prime}\left(\frac{t-1800}{100}\right) \\
& +0.00036840^{\prime \prime}\left(\frac{t-1800}{100}\right)^{2} \tag{29}
\end{align*}
$$

In his "Researches on the Motion of the Moon," Newcomb foumd that Hansen's tables required the correction§

$$
-1.14^{\prime \prime}-0.2917^{\prime \prime}(t-1800)-3.86^{\prime \prime}\left(\frac{t-1800}{100}\right)^{2}
$$

to the mean longitude of the Moon; and the correction $+0 \cdot 10^{\prime \prime}(t-1800)$ to the motion of the Moon's node. Or, in other words, if we put $g_{0}, g_{0}^{\prime}, \omega_{0}, \omega_{0}^{\prime}$ and Θ_{0} for Newcomb's corrected values of the quantities $g, g^{\prime}, \omega, \omega^{\prime}$, and Θ, then

$$
\begin{align*}
& g_{0}=g-1 \cdot 14^{\prime \prime}-0.2917^{\prime \prime}(t-1800)-3 \cdot 86^{\prime \prime}\left(\frac{t-1800}{100}\right)^{2} \\
& g_{0}^{\prime}=g^{\prime} \\
& \omega_{0}=\omega-0 \cdot 10^{\prime \prime}(t-1800) \tag{30}\\
& \omega_{0}^{\prime}=\omega^{\prime}-0 \cdot 10^{\prime \prime}(t-1800) \\
& \Theta_{0}=\Theta-0 \cdot 10^{\prime \prime}(t-1800)
\end{align*}
$$

and the substitution of these corrected values in equations (27) and (28) gives

$$
\begin{align*}
n^{\prime \prime} & =\frac{d}{d t}\left(g+\omega-\Theta-\psi_{1}\right)-0.2917^{\prime \prime}-0.077^{2}\left(\frac{t-1800}{100}\right) \tag{3I}\\
& =\frac{d}{d t}\left(g+\omega-\omega^{\prime}+\chi\right)-0.2917^{\prime \prime}-0.077^{2}\left(\frac{t-1800}{100}\right) \tag{32}
\end{align*}
$$

Newcomb's value of the mean sidereal motion of the Moon in $365 \not$ days is therefore

$$
\begin{align*}
n^{\prime \prime}=17325593.6814^{\prime \prime} & +0.16640^{\prime \prime}\left(\frac{t-\mathrm{I} 800}{100}\right) \\
& +0.00036840^{\prime \prime}\left(\frac{t-1800}{100}\right)^{2} \tag{33}
\end{align*}
$$

If we put

$$
\begin{equation*}
n^{\prime \prime}=a+b t+c t^{2} \tag{34}
\end{equation*}
$$

the expression for T_{1}, the length of the sidereal month, will be

$$
\begin{equation*}
\mathrm{T}_{1}=\frac{365 \frac{1.1}{7} \times 360^{\circ}}{a+b t+c t^{2}}=\frac{473364000^{\prime \prime}}{a}\left\{1-\frac{b}{a} t+\left(\frac{b^{2}}{a^{2}}-\frac{c}{a}\right) t^{2}-\text { etc. }\right\} \tag{35}
\end{equation*}
$$

to terms of the third order in $(t-1800)$.
Formulæ (26), (29), and (33) are of the same form as (34), and the several values of T_{i} are to be determined from them by substituting in (35) the values of a and b which they contain. In view of the uncertainty as to the true value of the secular acceleration of the Moon's motion, the terms depending upon the square of the time can have no real significance, and will be neglected.

From (26) and (35), according to AIRY

$$
\begin{align*}
\mathrm{T}_{1} & =27.321660682^{\mathrm{d}}-0.00000034125^{\mathrm{d}}\left(\frac{t-1800}{100}\right) \\
& =27^{\mathrm{d}} 07^{\mathrm{h}} 43^{\mathrm{m}} 11.483^{\mathrm{s}}-0.029484^{\mathrm{s}}\left(\frac{t-1800}{100}\right) \tag{36}
\end{align*}
$$

From (29) and (35), according to Hansen

$$
\begin{align*}
\mathrm{T}_{1} & =2732 \mathrm{I} 660702^{\mathrm{d}}-0.00000038415^{\mathrm{d}}\left(\frac{t-1800}{100}\right) \\
& =27^{\mathrm{d}} 07^{\mathrm{h}} 43^{\mathrm{mm}} 11.484^{\mathrm{s}}-0.033191^{\mathrm{s}}\binom{t-1800}{100} \tag{37}
\end{align*}
$$

And from (33) and (35), according to Newconb

$$
\begin{align*}
\mathrm{T}_{1} & =27.321661162^{\mathrm{d}}-0.00000026240^{\mathrm{d}}\left(\frac{t-1800}{100}\right) \\
& =27^{\mathrm{d}} 07^{\mathrm{b}} 43^{\mathrm{m}} 11.524^{\mathrm{s}}-0.022671^{\mathrm{s}}\left(\frac{t-1800}{100}\right) \tag{38}
\end{align*}
$$

Equations (36), (37), and (38) yield the following values for the mean length of the sidereal month at the epoch i850'0, expressed in mean solar seconds:

$$
\begin{align*}
& \text { Airy... } 2360591468^{8} \\
& \text { Hansen } 2360591467 \tag{39}\\
& \text { Newcomb } 2360 \text { 59I5I3 }
\end{align*}
$$

For the mean synodical, tropical, nodical, and anomalistic motions of the Moon we have

$$
\begin{align*}
& n_{1}^{\prime \prime}=\frac{d}{d t}\left(g-g^{\prime}+\omega-\omega^{\prime}\right)-0.2917^{\prime \prime}-0.0772^{\prime \prime}\left(\frac{t-1800}{100}\right) \tag{40}\\
& n_{2}^{\prime \prime}=\frac{d}{d t}(g+\omega-\Theta)-0.2917^{\prime \prime}-0.0772^{\prime \prime}\left(\frac{t-1800}{100}\right) \tag{41}\\
& n_{3}^{\prime \prime}=\frac{d}{d t}(g+\omega)-0.3917^{\prime \prime}-0.0772^{\prime \prime}\left(\frac{t-1800}{100}\right) \tag{42}\\
& n_{4}^{\prime \prime}=\frac{d}{d t}(g)-0.2917^{\prime \prime}-0.0772^{\prime \prime}\left(\frac{t-1800}{100}\right) \tag{43}
\end{align*}
$$

where in each case the literal part of the expression is Hassex's valne, and.the numerical terms are Newcomb's corrections. Of these expressions the most important is (40). Harsex's value for it is

$$
\begin{align*}
n_{1}^{\prime \prime}=16029616.5331^{\prime \prime} & +0.2+3824^{\prime \prime}\left(\frac{t-1800}{100}\right) \\
& +0.00040419^{\prime \prime}\left(\frac{t-1800}{100}\right)^{2} \tag{44}
\end{align*}
$$

and Newcomb's value is

$$
\begin{align*}
n_{1}^{\prime \prime}=16029616.2414^{\prime \prime} & +0.166624^{\prime \prime}\left(\frac{t-1800}{100}\right) \\
& +0.00040419^{\prime \prime}\left(\frac{t-1800}{100}\right)^{2} \tag{45}
\end{align*}
$$

Substituting these values of $n_{1}{ }^{\prime \prime}$ in formula (35), and neglecting the terms involving the square of the time, the mean length of the synodical month comes out, according to Hansen

$$
\begin{align*}
& 29.530587898^{\mathrm{d}}-0.00000044919^{\mathrm{d}}\left(\frac{t-1800}{100}\right) \\
= & 29^{\mathrm{d}} 12^{\mathrm{h}} 44^{\mathrm{m}} 02.794^{\mathrm{s}}-0.038810^{\mathrm{s}}\left(\frac{t-1800}{100}\right) \tag{46}
\end{align*}
$$

and according to Newcomb

$$
\begin{align*}
& 29.530588435^{\mathrm{d}}-0.00000030696^{\mathrm{d}}\left(\frac{t-1800}{100}\right) \\
= & 29^{\mathrm{d}} 12^{\mathrm{h}} 44^{\mathrm{m}} 02.841^{\mathrm{s}}-0.026522^{\mathrm{s}}\left(\frac{t-1800}{100}\right) \tag{47}
\end{align*}
$$

As a check on the preceding computations, we may employ the relation

$$
\begin{equation*}
\mathrm{T}_{1}\left(\mathrm{~T}+\mathrm{T}_{2}\right)=\mathrm{T}_{2} \tag{48}
\end{equation*}
$$

where T, T_{1} and T_{2} are respectively the lengths of the sidereal year, the sidereal month, and the synodical month. With the values of these quantities from (16), (38) and (47), we find

$$
\begin{aligned}
\mathrm{T}_{1}\left(\mathrm{~T}+\mathrm{T}_{2}\right) & =10786.2351745 \text { days } \\
\mathrm{TT}_{2} & =10786.2351736 \text { days }
\end{aligned}
$$

For the other months, at the epoch i8500, we have from equations (41), (42), and (43), by substituting the values of y, ω, and Θ from Harsen's lunar tables, and neglecting Newcomb's corrections

$$
\begin{align*}
& n_{2}^{\prime \prime}=17325644.33^{\prime \prime} \\
& n_{3}^{\prime \prime}=17395273.64 \tag{49}\\
& n_{4}^{\prime \prime}=17179158.87
\end{align*}
$$

whence

$$
\begin{aligned}
& \text { Mean Tropical Month }=27.321581292^{d}=27^{10} 07^{\mathrm{h}} 43^{\mathrm{m}} 0 \mathrm{~F}^{\circ} 624^{\mathrm{s}} \\
& \text { Mean Nodical Month } \quad=27.212219238^{\mathrm{d}}=27^{\mathrm{d}} 05^{\mathrm{h}} 05^{\mathrm{mm}} 35742^{\mathrm{s}} \\
& \text { Mean Anomalistic Month }=27.554550463^{d}=27^{d} 13^{\mathrm{h}} 18^{\mathrm{m}} 33 \cdot 160^{8}
\end{aligned}
$$

9.-THE CONSTANTS $\mu, m,\left(1+r^{\prime}\right), e_{2}, \gamma$, AND I, PERTAINING TO THE MOON.

For the regression of the Moon's node relatively to the line of equinoxes, in $365 \frac{1}{4}$ days, Hansen's lunar tables give*

$$
\begin{equation*}
\mu=-\frac{d}{d \grave{t}}\left(\Theta+\psi_{1}\right)=-69679.619 \mathrm{I}^{\prime \prime}+0.14136^{\prime \prime}\left(\frac{t-1800}{100}\right) \tag{5r}
\end{equation*}
$$

Whence, for the epoch 1850°

$$
\begin{equation*}
\mu=19^{\circ} 2 I^{\prime} 19.5484^{\prime \prime}=0.337815984 \text { of radius } \tag{2}
\end{equation*}
$$

Or, with Professor Newcomb's correction, from (30)

$$
\begin{equation*}
\mu=19^{\circ} 21^{\prime} 19.4484^{\prime \prime}=0.337815499 \text { of radius } \tag{53}
\end{equation*}
$$

The ratio of the mean sidereal motions of the Sun and Moon results immediately from (39) and (16), thus

$$
\begin{equation*}
m=\mathrm{T}_{1}=\frac{2360591.513^{8}}{31558149314^{3}}=0.074801329112 \tag{54}
\end{equation*}
$$

By putting

$$
a_{2}=r_{1}\left(1+r^{\prime}\right)
$$

and comparing this with the expression given by Delativay for the constant part of the lunar paralliax, mamely*

$$
\begin{equation*}
\frac{1}{r_{1}}={ }_{a_{2}}^{1}\left\{1+\left(\frac{1}{6}+\frac{1}{4} e_{1}^{2}\right) m^{2}-\frac{179}{288} m^{4}-\frac{97}{48} m^{5}\right\} \tag{55}
\end{equation*}
$$

we find

$$
1+u^{1}=1+\left(\begin{array}{l}
1 \tag{56}\\
6
\end{array}+\frac{1}{4} e_{1}^{2}\right) m^{2}-\frac{179}{288} m^{4}-\frac{97}{48} m^{5}
$$

Whence, by substituting the values of e_{1} and m from (24) and (54)

$$
\begin{equation*}
1+x^{\prime}=1.000908743 \tag{57}
\end{equation*}
$$

From all the lunar observations made at Greenwich between the years 1750 and 1847, inclusive, Sir G. B. Airy found for the coefficient of the first term of the equation of the Moon's center \dagger

$$
\begin{equation*}
22639^{\circ} 06^{\prime \prime} \tag{8}
\end{equation*}
$$

Professor Newcomb found that for the same term Hansen used in his lumar tables \ddagger

$$
\begin{equation*}
22640 \cdot 15^{\prime \prime} \tag{59}
\end{equation*}
$$

and from all the meridian observations of the Moon made at Greenwich between the years 1847 and 1874 , and at Washington between the year's 1862 and 1874 , inchusive, Newcomb fonnd the correction $-0.57^{\prime \prime}$ to (59), § which thus becomes

$$
\begin{equation*}
22639.58^{\prime \prime} \tag{60}
\end{equation*}
$$

Taking the mean of (58) and (60), giving the former double weight, and equating the result to its analytical equivalent, $\|$ we obtain

$$
22639^{\circ} 233^{\prime \prime}=2 e_{2}-\frac{1}{4} e_{2}^{3}+\frac{5}{96} e_{2}^{5}
$$

[^4]Whence

$$
\begin{equation*}
e_{2}=11323 \cdot 880^{\prime \prime}=0.054899720 \text { of radius } \tag{61}
\end{equation*}
$$

For the coefficient of the first term in the development of the Moon's latitude, expressed as a function of the Moon's true longitude, Arry fomd from the Greenwich observations made between the years 1750 and 1847 , inclusive, ${ }^{*} 18535{ }^{\circ} 55^{\prime \prime}$; but when expressed as a function of the time, this becomes, according to Delauxay \dagger

$$
\begin{equation*}
18461 \cdot 26^{\prime \prime} \tag{62}
\end{equation*}
$$

Professor Newcomb found that the value of the same coefficient implicitly contained in Havsex's lunar tables is \ddagger i $8461.629^{\prime \prime}$; and to that Newcomb fomud a correction of -O.15" from the Greenwich and Washington observations of the Moon made between the years 1862 and $1874 . \S$ His corrected value is therefore

$$
\begin{equation*}
18461 \cdot 48^{\prime \prime} \tag{3}
\end{equation*}
$$

Taking the mean of (62) and (63), giving the former double weight, and equating the result to Delalinay's analytical expression for it, \|\| we have

$$
\begin{aligned}
1846 \mathrm{I} \cdot 33^{\prime \prime} & =0.089503054 \text { of radius } \\
& =2 \gamma-2 \gamma^{\prime} e_{2}^{2}-\frac{1}{4} y^{5}+\frac{7}{3^{2}} \gamma e_{2}^{4}+\frac{1}{4} \gamma^{5} e_{2}^{2}-\frac{5}{144} y e_{2}^{6}
\end{aligned}
$$

whence, with the value of e_{2} from (61)

$$
\begin{equation*}
y=0.044886793 \tag{64}
\end{equation*}
$$

As y is the sine of half the inclination of the Moon's orbit to the plane of the ecliptic, (64) gives

$$
\begin{equation*}
I=5^{\circ} 08^{\prime} 43.3546^{\prime \prime}=0.089803757 \text { of radius. } \tag{65}
\end{equation*}
$$

10.-OBSERVED VALUE OF THE PARALLACTIC INEQUALITY OF THE MOON.

From the nature of the case, the observations for determining the coefficient of this inequality must be made partly upon the first, and partly upon the second limb of the Moon, and thus they involve all the systematic errors which may arise from the different conditions under which these limbs are observed, and all the uncertainty which attaches to onr knowledge of the Mon's semi-diameter. The following values are perhaps the best hitherto obtained:
I. From his discussion of the lunar observations made at Greenwich between the years 1811 and 1851 , Sir G. B. Airy concluded that the most probable value of this coefficient is $124^{\prime \prime} 7^{\prime \prime}$ I
2. Professor Newcomb found that the value deduced by Hansen from the Green wich and Dorpat observations is $126.46^{\prime \prime *}$

[^5]3. From 2075 lunar observations made at Greenwich between the years 1848 and 1866 , Mr. E. J. Stone fomm $1253^{6^{\prime \prime}} \pm 04^{\prime \prime}$; the probable emon being estimated. *
4. From the lunar observations made at Washington between the years 1862 and 1866, Professor Newcomis found $125^{\circ} 46^{\prime \prime} . \dagger$
5. From an extended discussion of the whole sulject, Messrs. Campibla and Neison found, either $12564^{\prime \prime} \pm 0.09^{\prime \prime}$, or $124^{\prime 6} 4^{\prime \prime} \pm 0.25^{\prime \prime}$, according as a "ertain liypothetical 45-year term was or was not admitted into the lumar theory \ddagger
6. From a comparison of Hanses's lumar tahles with some 1600 observations of the Moon, made with the Greenwich transit circle between the years 1862 and 1877 , Mr. Edmund Neison found $125313^{\prime \prime} \pm 0.046^{\prime \prime}$; bat he thonght it probahle that that value might require diminution lyy $0.73^{\prime \prime}$ on accoment of the before-mentioned hypothetical 45-year term. ${ }^{5}$

The controversy carried on in the Monthly Notices of the Loyal Astronomical Society by Mr. Stone and Messrs. Campbell and Neison, during the years i88o-'82, shows that the entire mass of existing lunar observations must be thoroughly rediscussed before a definitive value of the parallactic coefficient cam be ohtained. Respecting the data given above, it may be remarked that the values in paragraph 5 are superseded by that in paragraph 6 , and that the meam of the values in paragraphs i and 2 is nearly the same as the values in paragraphs 3,4 , and 6 . All questions of weights maty therefore be disregarded, and by taking the arithmetical mean of all the values except those in paragraph 5 , we find

$$
\begin{equation*}
\mathrm{Q}=125^{\circ} 46^{\prime \prime} \pm 0.35^{\prime \prime} \tag{66}
\end{equation*}
$$

where the probable error is estimated to be one-fifth of the difference between the greatest and least values.

11.--OBSERVED VALUE OF THE LUNAR INEQUALITY OF THE EARTIT.

The magnitude of the coefficient of this inequality is only about two-thirds that of the solar parallax, but as it depends upon differences of the sum's right ascension, which is always observed in precisely the same way, it should be free from constant errors, and can therefore be determined with great accuracy. The following are the best available data:

From observations at Greenwich, Paris, and Komigsberg, made during the periods stated, Le Verrier found ||

Greenwich	$1816-1826$	$\mathrm{~L}=6.45^{\prime \prime}$
Grenwwich	$1827-1850$	6.56
Paris	$1804-1814$	6.61
l'aris	I $815-1845$	6.47
Knenigsberg	i $814-1830$	6.43

$$
\text { Mean }=6.50 \pm 0.023^{\prime \prime}
$$

Professor Newconb found the following additional values*

$$
\begin{array}{lr}
\text { Greenwich } 1851-1864 & \mathrm{~L}=656^{\prime \prime} \pm 004^{\prime \prime} \\
\text { Washington } 1861-1865 & 6.51 \pm 007
\end{array}
$$

Giving these three results weights inversely proportional to the squares of their probable errors, mamely: $9.26,3.06$, and I, we obtain

$$
\begin{equation*}
L=6.514^{\prime \prime} \pm 0.016^{\prime \prime} \tag{67}
\end{equation*}
$$

1ٌ-OBSERYED VALUE OF THE LUNAR PARALLAX.

For the determination of this constant, all the data at present available are based upon declinations of the Moon, observed respectively in Europe and at the Cape of Good Hope.

From a comparison of Lacaille's observations at the Cape with those made at Greenwich, Paris, Berlin, and Bologna, during the same period, namely, from June, 1751, to February, 1753, Professor Olurssex found \dagger

$$
x=\sin \mathrm{P}=0.01651233+0.02449201 \varepsilon-0.00000162 d \mathrm{~L}
$$

or, multiplying by $3+233^{\prime \prime} / \sin 3423.3^{\prime \prime}=206274^{\circ} 28$

$$
\begin{equation*}
\mathrm{P}=3406.069^{\prime \prime}+5052^{\circ} 072^{\prime \prime} \varepsilon-0.334^{\prime \prime} d \mathrm{~L} \pm 0.45^{\prime \prime} \tag{68}
\end{equation*}
$$

where ε is the Earth's compression, and $d \mathrm{~L}$ the error in the longitude of the Cape, expressed in minutes of time. Neglecting $d \mathrm{~L}$, we have from (4)

$$
\varepsilon=\frac{1}{293.466}
$$

whence

$$
\begin{equation*}
\mathrm{P}=3406.069^{\prime \prime}+17^{.215^{\prime \prime}}=3423.284^{\prime} \pm 045^{\prime \prime} \tag{69}
\end{equation*}
$$

From his own observations of the Moon at the Cape, combined with observations made at Greenwich and Cambridge during the same period, namely, from May, 1832, to May, 1833 , Professor Thomas Hexderson deduced two values of the lunar parallax; one by comparison with Burchiardt's tables, and the other by comparison with Damoiseau's tables. As Burckhardt's parallaxes are now known to be erroneous, we have only to consider the result from Damorseau's tables, which was \ddagger

$$
\begin{equation*}
\mathrm{P}^{\prime}=3+22.46^{\prime \prime}+5062^{\prime \prime} \delta c-0.05^{\prime \prime} \delta t-0.12 \delta s-0.1+\delta s^{\prime} \tag{70}
\end{equation*}
$$

where

$$
\begin{aligned}
\text { Longritude of Calpe Observatory } & =1^{\mathrm{h}} \mathrm{I}^{\mathrm{mI}} 55^{8}+\delta t^{8} \\
\qquad \delta c & =\varepsilon-\frac{1}{300}
\end{aligned}
$$

and δs and δs^{\prime} are corrections for any constant differences which may have existed in the values of the Moon's semi-diameter given by the different instruments, and the different observers.

Neglecting δs and δs^{\prime}, we have

$$
\begin{aligned}
& \delta t=-0.35^{.4} \\
& \delta r=\frac{1}{293.466}-\frac{1}{300}=0.00007422
\end{aligned}
$$

Whence, from (70)

$$
\begin{equation*}
P=3422.46^{\prime \prime}+0.376^{\prime \prime}+0.018^{\prime \prime}=3422 \cdot 854^{\prime \prime} \tag{71}
\end{equation*}
$$

By combining 123 observations of the Moon made at the Ciape during the years 1830 to 1837 , with corresponding observations made at Greenwich, Edinburgh, and Cambridge, Mr. Brees found*

$$
\begin{equation*}
\mathrm{P}=3422.696^{\prime \prime}-0.013 \delta t \tag{72}
\end{equation*}
$$

where δt is the correction to the assumed longitude of the Cape, and the compression of the Earth is taken to be $1 / 300$. With our value of the compression, namely, 1/293.466, and $\delta t=-0.35^{\circ}$, (72) gives

$$
\begin{equation*}
\mathrm{P}^{\prime}=3422.696^{\prime \prime}+0.376^{\prime \prime}+0.005^{\prime \prime}=3423.077^{\prime \prime} \tag{73}
\end{equation*}
$$

By combining 239 observations of the Moon made at the Cape during the years i 856 to 1861 with corresponding observations made at Greenwich, Mr. E. J. Stone found \dagger

$$
\mathrm{P}=3422.707^{\prime \prime} \pm 0.049^{\prime \prime}
$$

Mr. Stoxe does not state what compression he employed, but as I/300 was then used both at Greenwich and the Cape, the same correction should probably be applied as in (71) and (73). That gives

$$
\begin{equation*}
\mathrm{P}=3422^{\prime} 707^{\prime \prime}+0.376^{\prime \prime}=3423^{\circ} 083^{\prime \prime} \pm 0.049^{\prime \prime} \tag{74}
\end{equation*}
$$

Collecting our results, we have from (69), (71), (73) and (74),

$$
\begin{aligned}
\mathrm{P}= & 34^{2} 3.284^{\prime \prime} \text { according to Olufsen. } \\
& 34^{22} .854 \text { according to Henderson. } \\
& 34^{2} 3.077 \text { according to Breen. } \\
& 34^{2} 3.083 \text { according to Stone. }
\end{aligned}
$$

When it is remembered that the first of these values is based upon observations made with old-fashioned quadrants, the second and third upon observations made with mural circles, and the fourth upon observations made with large transit circles, their agreement is remarkable. However, as the observations upon which the second result rests have all been embodied in the third, we will adopt the mean of the last two, and put

$$
\begin{equation*}
\mathrm{P}=34^{23} \cdot 08^{\prime \prime} \pm 0.050^{\prime \prime} \tag{75}
\end{equation*}
$$

If we assume the probable errors of the latitudes of Greenwich and the Cape to be $\pm 0.05^{\prime \prime}$, then the probable error of P should be increased to $\pm 0.121^{\prime}$

13.-THE CONSTANT OF PRECESSION.

Putting ψ and ψ_{1} respectively for the secular parts of the luni-solar, and of the general precession; ω for the mean inclination of the equator of $1850+t$ to the fixed ecliptic of 1850; and ω_{1} for the mean inclination of the equator of $1850+t$ to the ecliptic of $1850+t$; then, according to Le Verrier and Serret, we shall have*

$$
\begin{align*}
& \psi=\left\{\begin{array}{l}
50.37140^{\prime \prime}+x+0.0145^{\prime \prime} v+0.1743^{\prime \prime} \nu^{\mathrm{i}} \\
+0.0169^{\prime \prime} \nu^{\mathrm{iii}}-0.0575^{\prime \prime} \nu^{\mathrm{ir}}-0.0124^{\prime \prime} \nu^{\circ}
\end{array}\right\} t-0.000108806^{\prime \prime} t^{2} \\
& \omega=\omega_{0}+0.000007180^{\prime \prime} t^{2} \tag{76}\\
& \psi_{1}=\left(50.23572^{\prime \prime}+x\right) t+0.000112900 t^{2} \\
& \omega_{1}=\omega_{0}-\left\{\begin{array}{l}
0.47566^{\prime \prime}+0.0053^{\prime \prime} v+0.2888^{\prime \prime} v^{\mathrm{i}} \\
+0.0083^{\prime \prime} v^{\mathrm{iii}}+0.160 \mathrm{I}^{\prime \prime} v^{\mathrm{is}}+0.013 \mathrm{I}^{\prime \prime} v^{\mathrm{s}}
\end{array}\right\} t-0.000001490^{\prime \prime} t^{2}
\end{align*}
$$

where x is a small unknown correction to the precession constant, and t is counted in Julian years from the epoch $185^{\circ} \circ$. From the adopted masses of the planets, given on pages 42 and 48 , we have

$$
\begin{array}{lll}
v=-0655353 & v^{, \text {iii }}=-0.13355^{2} & v^{\tau}=+0.002970 \\
v^{\mathrm{i}}=-0.007004 & v^{\mathrm{iv}}=+0.002339 &
\end{array}
$$

Whence, by substitution in (76)

$$
\begin{align*}
& \psi=\left(50.358 .25^{\prime \prime}+x\right) t-0.000108806^{\prime \prime} t^{2} \\
& \omega=\omega_{0}+0.000007180^{\prime \prime \prime} t^{2} \tag{77}\\
& \psi_{1}=\left(50.23572^{\prime \prime}+x\right) t+0.000112900^{\prime \prime} t^{2} \\
& \omega_{1}=\omega_{0}-0.46947^{\prime \prime} t-0.000001490^{\prime \prime} t^{2}
\end{align*}
$$

From the series of observed values of the obliquity of the ecliptic given by Le Verrier, \dagger and with the theoretical value just found for the annual change of the obliquity, we deduce for 1850°

$$
\begin{equation*}
\omega_{0}=23^{\circ} 27^{\prime} 31.36^{\prime \prime} \pm 0.345^{\prime \prime} \tag{78}
\end{equation*}
$$

To find the planetary precession, λ, we have

$$
\begin{equation*}
\psi-\psi_{1}=\lambda \cos \frac{1}{2}\left(\omega+\omega_{1}\right) \tag{79}
\end{equation*}
$$

where it will be sufficiently accurate to take

$$
\begin{equation*}
\cos \frac{1}{2}\left(\omega+\omega_{1}\right)=\cos \left(\omega_{0}-0.234735^{\prime \prime} t\right)=\cos \omega_{0}+0.234735^{\prime \prime} t \operatorname{arc} 1^{\prime \prime} \sin \omega_{0} \tag{80}
\end{equation*}
$$

The substitution in (79) of the values of ψ, ψ_{1}, ω and ω_{1}, from (77), (78) and (80), gives

$$
0.12253^{\prime \prime} t-0.000221706^{\prime \prime} t^{2}=\lambda(09173472+0.000000453 t)
$$

Whence

$$
\begin{equation*}
\lambda=0.133570^{\prime \prime} t-0.00024^{1} 748^{\prime \prime} t^{2} \tag{81}
\end{equation*}
$$

Equations (77), (78) and (81) give

$$
\begin{align*}
& \frac{d \psi}{d t}=50.35825^{\prime \prime}+x-0.000217612^{\prime \prime} t \\
& { }_{d t} \psi_{1}=50.23572^{\prime \prime}+x+0.000225800^{\prime \prime} t \\
& { }_{d \lambda}^{d \lambda}=0.13357^{\prime \prime}-0.000483496^{\prime \prime} t \tag{82}\\
& \sin \omega=0.39808812+0.0000000000319 t^{2} \\
& \cos \omega=0.91734717-0.0000000000139 t^{2}
\end{align*}
$$

And by substituting these values in the well-known expressions

$$
m=\frac{d \psi}{d t}(\cdot) \omega-\frac{d \lambda}{d t} \quad \quad n=\frac{d \|}{d t} \sin \omega
$$

we obtain

$$
\begin{align*}
m & =46.06243^{\prime \prime}+0.000283870^{\prime \prime} t+0.917347 x \tag{83}\\
n & =20.04702^{\prime \prime}-0.000086629^{\prime \prime} t+0.398088 x
\end{align*}
$$

For the epoch i $777^{\circ} 5$, from a comparison of his own reduction of Bradeey's observations with Prazzi's catalogue for 1800 , Bessel found*

$$
m=46.034002^{\prime \prime} \quad n=20.064472
$$

When Newcomb's correction for systematic errors in the right ascensions of the catalogues is applied, \dagger namely, $-0^{\circ} 43^{\prime \prime} / 45=-0.000555^{\prime \prime}$, these numbers become

$$
m=46.024447^{\prime \prime} \quad n=20.064472
$$

and their substitution in $\left(S_{3}\right)$, together with $t=-72.5$ years, gives

$$
\text { from } m, x=-0.01897^{\prime \prime} \quad \text { from } n, x=+0.02806
$$

Giving the result from m donble weight, and taking the mean

$$
\begin{equation*}
x=-000329^{\prime \prime} \tag{4}
\end{equation*}
$$

For the epoch i 790 , from a comparison of Bessel's reduction of Bradlet's observations with the Dorpat observations, Otto Struve found the general precession to be $50^{\circ} 23492^{\prime \prime} \pm 0.00757^{\prime \prime} . \ddagger$ Applying Newcomb's correction for systematic errors, § mamely, $-0.37^{\prime \prime} / 70=-0.00529^{\prime \prime}$, the precession becomes $50.22963^{\prime \prime}$. Formula (82) gives for the same epoch $50^{\circ} 222$ I $^{\prime \prime}$, and therefore

$$
\begin{equation*}
x=+0.00746^{\prime \prime} \tag{85}
\end{equation*}
$$

For the epoch $1844^{\circ} 7$, from a comparison of Weisse's reduction of Bessel's zones with Scijellerup's catalogue, Nyrén found \| $m=46.0265^{\prime \prime}$. Applying Newcomb's

```
*76, p.404. t81, p.108. #$5, p.10.4. &81, p. 108. |S2, p. 571.
```

correction for systematic errors, namely,* $+1.04^{\prime \prime} / 36=+0.0289^{\prime \prime}$, this becomes $m=46.0554^{\prime \prime}$, which being substituted in (83), together with $t=-5.3$ years, gives

$$
\begin{equation*}
x=-000603^{\prime \prime} \tag{86}
\end{equation*}
$$

For the epoch $1829^{\circ} 7$, from a comparison of Lalande's zones with Schjellerup's catalogue, Dreyer found $\dagger m=46.0666^{\prime \prime}$, which being substituted in (83), together with $t=-20^{\circ} 3$ years, gives

$$
\begin{equation*}
x=+0.01082^{\prime \prime} \tag{87}
\end{equation*}
$$

For the epoch 1805° Mr. Ludwig Struve made a comparison between Dr. Auwer's reduction of Bradley's observations and the Pulkowa catalogue of 1855 , from which he found \ddagger

$$
m=46.04 \mathrm{I} 7^{\prime \prime}+0.000274 \mathrm{I}^{\prime \prime} t
$$

where t is reckoned from the year 1800 . His observed result for 1805° must therefore have been

$$
m=46.04307^{\prime \prime}
$$

and the substitution of that in (83), together with $t=-45^{\circ}$ years, gives

$$
\begin{equation*}
x=-0.00718^{\prime \prime} \tag{88}
\end{equation*}
$$

Mr. L. Struve speaks highly of Dr. Bolte's Untersuchungen über die Präcessionsconstante, \oint but the present writer has never seen that work.

Collecting our results, we have from numbers (84), (85), (86), (87), and (88)

Authority.	Value of x.	General Precession.	
		1800.	1850.
	"	"	"
Bessel.	-0.003 29	50.22114	$50 \cdot 23243$
O. Strute	+0.007 46	50.23189	$50 \cdot 24318$
Nyben	-0.006 03	50.21840	50.22969
Dreyer	+0.010 82	50.23525	50.24654
L. Struve	-0.007 18	50.21725	$50 \cdot 22854$
Means	+0.000 3^{6}	$50 \cdot 224.79$	50.236 o8

And by substituting the mean value of x in (77)

$$
\begin{align*}
& \psi=\left(50.35861^{\prime \prime} \pm 0.00248^{\prime \prime}\right) t-0.000108806^{\prime \prime} t^{2} \\
& \psi_{1}=\left(50.23608^{\prime \prime} \pm 0.00248^{\prime \prime}\right) t+0.000112900^{\prime \prime} t^{2} \tag{89}
\end{align*}
$$

14.-THE CONSTANT OF NUTATION.

The following is an abstract of the most important determinations of the constant of nutation hitherto made:

```
1821. BrINKLEy, from 161& zenith distances of Io stars, measured at the observatory of Trinity College, Dublin,
        between the years ISoS and IS20. (90, p. 347.) . . . . . . . . . . . . . . . . . . . . . . 9.25 t0.05
1836. Buscri, from 1949 zenith distances of 23 stars, observed at Kew and Wansted by Ibrubley during theyears 1727 to 1747 . ( \(91, \mathrm{p} .33 \mathrm{~S}\).)
    9.232+0.031
IS38. Robinson, from 6023 zenith distances of 15 stars, measured at Greenwich with the mural circle during
        the years ISI2 to 1S 35. (113, p. IS.)
    9.239+0.052
1841. LuNDAHL, from more than 1200 zenith distances of Polaris,obscrved at Dorpat during the years iS22 to
        1S38. (991/2, p. 33.)
    9.236\pm0.0.40
1841. C. A. F. J'eters, from 603 right ascensions of Folaris, observed at Dorpat by STRU\'E and l'reloss during
        the years I $22 to IS3S. (109, p. 161.) . . . . . . . . . . . . . . . . . . . . . . . . .
        AIN, from 17J zenith distances of y Draconis, observed at Greenwich with the 25-foot zenith tube during
        the years 1S S7 to 1847. (102, P. 186.)
1868. E. I. StoNe, from 3250 zenith distances of Polaris. 51 Cephei, and \delta Ursx Minoris, together with 1936
        right ascensions of Polaris, all observed at Greenwich, with the transit circle, during the years I S5I to
        I867. (IIt, p. 249.) . . . . . . . . . . . . . . . . . . . . . . . . 
1871. NYREN, from 375 observations of v Urse Majoris, l Draconis, and oz Draconis, made at Pulkowa with the
        prime vertical rransit instrument, during the years IS+0 to IS62. (104, p. 30.) . . . . . . . . . . 
1882. DowNING, from 10+1 zenith distances of y Draconis, observed at Greenwich with the reflex zenith tube,
        during the years I }857\mathrm{ to IS75. (92, 1. 344.) . . . . . . . . . . . . . . . . . . . . .
1885. De Ball, from 1867 right ascensions of Polaris, 51 Cephei, and \delta Ursæ Minoris,observed at Pulkowa by
        WAGNER during the years IS61 to 1872. (89, p.42.) . . . . . . . . . . . . . . . . . . . 9.217 土00012
```

The probable errors attached to Brinkley's and Robinsos's results have been taken from Peters's paper,* and that attached to Stone's result has been computed by the present writer:

Giving the determinations by Mans and Downing half weight, because they rest upon a single star, we have from the weighted mean of the whole series

$$
\begin{equation*}
0=9.233 \mathrm{I}^{\prime \prime} \pm 0.0112^{\prime \prime} \tag{90}
\end{equation*}
$$

Buscu's determination should probably have been rejected on account of the errors discovered in his computations by Dr. Auwers, \dagger but its retention does not sensibly affect (90). The probable error of (90) is largely increased by the constant errors which evidently exist in the results found by Main, Stone, and Downing; but as their determinations rest upon more than 6400 observations, made with three different instruments, it does not seem prudent to ignore them.

15.-THE CONSTANT OF ABERRATION.

The following is an abstract of the best values hitherto obtained for the constant of aberration:

```
1817. Bessel, from his discussion of Bramley's observations. (1, p. 123.) . . . . . . . . . . . . . . . 204475
1819. PiAZZI, by the observations made at Palermo (5. p. 207) . . . . . . . . . . . . . . . . . . . . 20.229
1821. 13RINKLEY; from 2633 zenith distances of r& stars observed at Trinity College, 1)ublin. (90, p. 350.) - 20.372
1822. F. G. W. STRIVF, from }693\mathrm{ differences of right ascension between }6\mathrm{ pairs of stars observed at Dorpat.
        (I15, p. lxiv.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203449
    This result was subsequently corrected by C. A.F. Peters to 20. 361" }\pm0.01S\mp@subsup{6}{}{\prime\prime}.\mathrm{ See 111, p. 55
```

```
1828. Ricilarinon, from 4119 zenith distances of 14 stars, observed at Greenwich. (112, D.68.) . . . . 20.503
1836. Busch, from 1949 zenith distances of 23 stars, observed by Bramlery at Kew and Wansted. (91, p. 338.) 20.212 土0.038
1839. HendersoN, from 23I zenith distances of Sirius, observed at the Cape of Good Hope. (95, p. 248.). 20.41
1841. F. G. W.. STRUT1:, from Ig observations of v Ursie Majoris in the prime vertical, at Pulkowa. (II6, p. 290.) 20.493 士0.040
1841. Lindenau, from 8oo right ascensions of Polaris, observed at Greenwich, Konigsberg, Dorpat, Palermo,
        Milan, and Seeberg, during the years 1750 to 1$16. (98, p. 62, and 111, p.65.) . . ......
1841. C. A. F. l'eters, from 60j right ascensions of Polaris,obscrved at Dorpat. (IOg, pp. 142 and 180.) . .
1841. LuNDAIL., from more than 1200 declinations of Polaris,obsersed at Dorpat. (99 1/2, p. 37.)......)
1842. Henderson, from 272 double altitudes of al and a}\mp@subsup{a}{}{2}\mathrm{ Centauri,observed at the Cape of Good Hope. (96,
    p. 370.)
    20.523 \pm0.065
1843. F. G. W. Struve, from 298 observations made upon }7\mathrm{ stars with the prime vertical transit instrument at
        Pulkowa. (IIS, p. 275.)
    20.445 土0.011
1849. C. A. F. Peters, from Rradley'S sector observations at Greenwich. (ili, p. 23.) . . . . . . . . . 20522 士0.079
1849. C. A. F. PeTERS, from 704 declinations of 8 stars observed with the Ertel vertical circle at Pulkowa.
        (111, p.138.)
    20.481 土0.013
1849. LINDILAGEN, from 396 right ascensions of Polaris, observed at Pulkowa. (99, p.354.) . . . . . . 20.498 士0.012
1851. Maclear, from }391\mathrm{ double altitudes of al and a}\mp@subsup{a}{}{2}\mathrm{ Centauri,observed at the Cape of Good Hope. (roo,
        p. 98.)
    20.531 士0.038
1852. Maclear, from 137 double altitudes of \beta Centauri, observed at the Cape of Good Hope. (IoI, p. 152.) 20.594 士0.049
1860. Main, from 486 zenith distances of }\gamma\mathrm{ Draconis, observed at Greenwich with the reflex zenith tube, during the years 1852－1859．（103，p．190．）
1882．Downing，from 1041 zenith distances of \(\gamma\) Draconis，observed at Greenwich with the reflex zenith tube， during the years \(1857-1875\) ．（ 92 ，p．344．）
\(20.449 \pm 0.032\)
\(20.425 \pm 0.017\)
\(20.55^{1} \pm 0.043\)
\(20.523 \pm 0.065\)
1843．F．G．W．Struve，from 298 observations made upon 7 stars with the prime vertical transit instrument at Pulkowa．（IIS，p．275．）
\(20.445 \pm 0.011\)
1849．C．A．F．Feters，from Rradley＇s sector observations at Greenwich．（ili，p．23．）．．．．．．．．． \(20.522 \pm 0.079\)
1849．C．A．F．Peters，from 704 declinations of 8 stars observed with the Ertel vertical circle at Pulkowa． （111，p．138．）
\(20.48 \mathrm{I} \pm 0.013\)
1849．Lindiagen，from 396 right ascensions of Polaris，observed at Pulkowa．（99，p．354．）．．．．．． \(20498 \pm 0.012\)
1851．Maclear，from 391 double altitudes of \(a^{1}\) and \(a^{2}\) Centauri，observed at the Cape of Good Hope．（Ioo， p．98．）
\(20.531 \pm 0.038\)
\(20.594 \pm 0.049\)
\(20.335 \pm 0.023\)
\(20.378 \pm 0.040\)
1883．Nyrén，from the series of observations made at Pulkowa，with the vertical circle，by Peters，Gylinen， and Nyrén；with the transit instrument，by Schweizer and Wagner；and with the prime vertical transit instrument，by F．G．W．Struve and Nyrén．（io6，p．47．）
\(20.492 \pm 0.006\)
1888．A．Hall，from 436 observations of \(a\) Lyre，made with the prime vertical transit instrument at Washing－ ton，during the years \(1862-1867\) ．（94，p．I2．）
\(20.454 \pm 0.014\)
1888．KUSTNER，from 244 differences of meridian zenith distance of 7 pairs of stars，measured with the uni－ versal transit at Berlin．（97，p．45．）
\(20.313 \pm 0.011\)
```

A clearer exhibition of the facts will be attained by arranging the foregoing data somewhat differently，and in so doing Peters＇s reductions of Bradley＇s observations at Greenwich and Struve＇s observations at Dorpat will be accepted to the exclusion of those by Bessel and Struve himself；the determinations by Piazzi and Brink－ Ley will be omitted，the latter on account of the unexplained systematic errors exhib－ ited by his declinations；Busch＇s reduction of Bradlex＇s observations at Kew and Wansted will be omitted on account of the errors discovered in Buscr＇s computations by Arwers；＊Struve＇s preliminary result from his observations of v Urse Majoris in the prime vertical will also be omitted because the same observations are embodied in his final result，published in 1843 ；and Nyrés＇s result will be separated into its original constituents．When these changes are effected，and the results are classed under the observatories furnishing the observations，we have the following exhibit：

GREENWICH．
Peters，from Bradley＇s sector observations ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 20.522
RICharinson，from mural circle observations ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 20.503
MaIN and DOWNing，from zenitl distances of y Draconis ．．．．．．．．．．．．．．．．．．．．．．．．．． 20.356

CAPE OF GOOD HOPE．

DORPAT.

C. A. F. Peters, from right ascensions of Polaris . 20425

PULKOW:

C. A. F. Peters, from vertical circle observations . 20481

LINDHAGEN, from transit observations..20498
Nyrés, from Crldés's observations with the vertical circle . 20.469
Nyréx, from his own observations with the vertical circle . 20495
NYREN, from WAGNER's obserwations with the transit 20.483
Nyrex, from his own observations with the prime vertical transit . 20.517
BERLIN.
Küstaier, from the zenith-telescope method . $20 \cdot 313$

WASHINGTON゙

A. HAll, from observations of a Lyre with the prime rertical transit 20454

VARIOUS OBSERVATORIES.

Lindenau, from right ascensions of Polaris
Unmistakable evidences of constant errors are exhibited in these values of the constant of aberration-most notably in those found by Mari, Downing, Maclear from β Centauri, F. G. W. Struve at Dorpat, and Küstner. Nevertheless, it is difficult to assign thoroughly satisfactory reasons for rejecting any of them. The Pulkowa values are probably the most correct, but even they exlibit a range of $0.072^{\prime \prime}$. Perhaps $n 0$ two astronomers would assign the same relative weights to the different determinations, and yet, within rather wide limits, it is precisely these weights which determine the magnitude of the final result. If we take the means by observatories, we find

and the arithmetical mean of the results from all the observatories, except Berlin, is

$$
\alpha=20.467^{\prime \prime} \pm 0.007^{\prime \prime}
$$

Again, if we take the arithmetical mean of all the results in the last general exhibit, the Pulkowa values will have relatively a little more weight than the others, and we slatl obtain

$$
\begin{equation*}
\alpha=20.466^{\prime \prime} \pm 0.011^{\prime \prime} \tag{91}
\end{equation*}
$$

which will be adopted. This lies almost exactly midway between Strure's classic value and that recently found by Nrrés in his admirable paper on the aberration of the fixed stars.

16. -THE LIGHT EQUATION.

The time occupied by light in traversing the mean radius of the Earth's orbit is usually called the light equation, and there are but two determinations of it from the eclipses of Jupiter's satellites, namely, Delambre's, published in 1792, and Glasevapp's, published in i 874.

Delambre's value is $493^{\circ} 2^{\circ}$, which he originally derived from 500 eclipses of Jupiter's first satellite, and subsequently revised without obtaining any sensible correction, although he used more than a thousand eclipses of the same satellite. The details of these investigations hare never been published, and our knowledge of them is confined to the brief allusions contained in Lalande's Astronomy;* Delambre's Astronomy, \dagger and Delambre's Tables écliptiques des satellites de Jupiter.f The last is the most explicit.

Glasenapp's value is $500 \cdot \mathrm{~S}_{4}{ }^{9} \pm \mathrm{I} 02^{8}, 5$ which he derived from 391 eclipses of the first satellite of J upiter, observed during the years 1848 to 1873 . His memoir, although very valuable, is rendered almost inaccessible by being printed in the Russian language; but Mr. Downing has done something to remove that obstacle by publishing an excellent account of the work in The Observatory, rol. 12, pp. 173 and 210.

In combining these two results the following facts must not be overlooked:
I. The eclipses used by Delambre were inferior to those used by Glasenapp on account of having been observed with less powerful telescopes, and possibly with less accurate knowledge of local time; but their inferiority can not have been great, because Delambre says of the eclipses he used, "il n'est pas rare de voir deux observations d'une même éclipse différer entre elles d'une demi minute," $|\mid$ and residuals of that magnitude are not rare among Glasenapp's equations.
2. After a thorough trial of Bally's photometric method of correcting observations of the eclipses of Jupiter's satellites, both Maskelyne and Delambre abandoned it as useless; II and yet Glasenapp's investigation is founded upon that very method, with some modifications whose value it is difficult to estimate. Howerer, it will not escape notice that with the application of all his comections Glasenapp found the light equation to be $50084^{9} \pm 1.2^{8}$, while without them he foumd it to be $49715^{9} \pm 120^{8}$. The diminution effected in the probable error by the application of the corrections is so small as to indicate either the failure of Bully's method or the existence of periodic errors in the tables of the motions of the satellites. Glasenapp thought the latter hypothesis the more probable.
3. Delaibre's result depends upon more than a thousand eclipses, while Glasevapp's depends upon only 391 . And here we encounter the singular circumstance that the result which Delimbre obtained from 500 eclipses was not sensibly modified when he used more than a thonsand: while Glasenapp's result, which rests upon nearly 400 eclipses, differs largely from Delambre's. The existence of constant errors in one or both series of observations seems the most probable explanation.

In view of these facts, it is not clear that Glasenapp's result is entitled to more confidence than Delambre's; nevertheless, we adopt the arithmetical mean of the two,

[^6]thas giving Glasmapry mather more than double weight, and in view of the meentanty of the result we attribute the whole of Glasmapres probable error to it. In that way we find
\[

$$
\begin{equation*}
\text { Light equation, } \theta=497^{\circ} 0^{\circ} \pm 1 \circ 2^{\circ} \tag{92}
\end{equation*}
$$

\]

which is almost identical with the result obtained by Citasmapr when he omitted his corrections to the observed times of the eclipses.

17.-V, THE VElocity of light in vacuo.

The velocity of light can be measured between points upon the Earth's surface, either by the toothed-wheel method or by the revolving-mirror method. Both methods have heen used, and the following are the principal results:

Fizead found

$$
V=70948 \text { lieus of } 25 \text { to a degree }=315324 \text { kilometers }=195935 \text { miles }
$$

His experiments were made in 1849 by the toothed-wheel method, working across an interval of 8.633 kilometers $=5.364$ miles, between Suresnes and Montmartre, Paris.*

Foucaulit's experiments gave \dagger

$$
\mathrm{V}=29857+ \pm 204 \text { kilometers }=185527 \pm 127 \text { miles }
$$

He used the revolving-mirror method, and worked across an interval of only 20 meters $=65.6$ feet, at Paris. His experiments were in progress from May to September, 1862 ; but he based his final result upon the 80 observations made on September 18, 19, and 21.

Cornu found, from the experiments which he made in August, 1872,

$$
\mathrm{V}=298500 \pm 995 \text { kilometers }=185481 \pm 618 \text { miles }
$$

This result rests upon 658 experiments, made by the toothed-wheel method, working across an interval of 10.310 kilometers $=6.4064$ miles, between l'École Polytechnique and Mont-Valérien, Paris. \ddagger

Cornu found, from the experiments which he made in September, 1874,

$$
V=300400 \pm 300 \text { kilometers }=186662 \pm 186 \text { miles }
$$

This result rests upon 546 experiments, made by the toothed-wheel method, working across an interval of $22^{\circ} 910$ kilometers $=14.2357$ miles, between the observatory and Montlhéry, Paris. §

Michelson found, from his experiments of June and July, 1879,

$$
\mathrm{V}=299910 \pm 51 \text { kilometers }=186357 \pm 31 \cdot 7 \text { miles }
$$

This result rests upon 100 experiments, made by the revolving-mirror method, working across an interval of 1986.23 feet $=0.3762$ of a mile $=0.6054$ of a kilometer, at the U. S. Naval Academy, Amapolis, Md..|

[^7]Young and Forbes found

$$
\mathrm{V}=30138+ \pm 263 \text { kilometers }=187273 \pm 164 \text { miles }
$$

This result rests upon only 12 experiments, made in December, i880, and January, i881, by a peculiar application of the toothed-wheel method. The light from the collimator containing the toothed wheel was sent simultameously to two reflecting collimators situated at different distances, but nearly in the same straight line; and the observation consisted in determining when the images returned by these two collimator's were of equal brightness. The toothed-wheel collimator was situated at Kelly House, Wemyss Bay, Scotland, and the reflecting collimators were located on the hills behind Imellan, across the mouth of the river Clyde, their distances being respectively $3^{\circ} 1884$ and $3 \div 493$ miles, or $5^{11} 3^{13}$ and 5.5510 kilometers.*

Newconis found three results from the experiments which he made at Washington by the revolving-mirror method during the years 1880 to 1882 . They are as follows: \dagger
(a) From 148 experiments, made between June, i880, and April, 188 i, across an interval of $5 \cdot 1019$ kilometers $=3 \cdot 1702$ miles, between Fort Myer and the U. S. Naval Observatory,

$$
V=299709 \text { kilometers }=186232 \text { miles }
$$

(b) From 39 experiments, made in August and September, 1881, across an interval of 74424 kilometers $=4.6245$ miles, between Fort Myer and the Washington Monument,

$$
V=299776 \text { kilometers }=186274 \text { miles }
$$

(c) From 65 experiments, made in July, Augist, and September, I882, across the above-mentioned interval between Fort Myer and the Washington Monument,

$$
\mathrm{V}=299860 \text { kilometers }=186326 \text { miles }
$$

If these results are to be combined, according to Newcomb we should assign the weight 2 to $(a), 3$ to (b), and 6 to (c); but he preferred to use (c) alone, on the ground that it is probably least affected by constant errors.

Micuelson found, from his experiments in October and November, 1882,

$$
\mathrm{V}=2998_{53} \pm 60 \text { kilometers }=186322 \pm 37 \text { miles }
$$

This result rests upon 23 experiments, made by the revolving-mirror method, working across an interval of 2049.35 feet $=0.388$ I of a mile $=0.6246$ of a kilometer, at the Case Institute, Cleveland, Ohio. \ddagger

Now let us examine Cornu's results a little more closely. His experiments cover a wide range in the speed of the toothed wheel, and his mean result for each speed is given in Table II, where V^{\prime} is the velocity of light derived from an experiment in which $\frac{1}{2}(2 n-1)$ teeth of the wheel passed during the interval between the departure and the return of the light, and p is the weight of V^{\prime}. With respect to the experiments

[^8]\dagger 140, pp. 194, 201, and 202.
\ddagger I 39, p. 244.
made in 1874 , it is to be observed that the values of V^{\prime} are the weighted means of Connu's meorrected values of $\frac{1}{2}(\mathrm{~V}+v)$ and $\frac{1}{2}(\mathrm{U}+u)$, the weights being taken just as Corney gave them.

Table II.-Cornu's experiments on the velocity of light. (130, p. 174 and 131, pp. A. 2ifi-i.)

Experiments of 1872.			Experiments of 1874.		
$2 n-1$	V'	f	$2 n \quad 1$	V'	f
3	$302 \cdot 5$	129	7	300166	833
5	2977	2095	9	300620	2511
7	298.2	4391	11	300050	2662
9	$298 \cdot 8$	478	13	302068	2197
11	297.5	924	15	299960	3150
13	$300 \cdot 5$	260	17	300100	32946
			19	300224	28880
			21	300359	32193
			23	300500	${ }^{158} 7$
			25	300490	6250
			27	300 304	13122
			29	300304	54665
			31	299874	6727
			33	299843	25047
			35	300083	29400
			37	299550	6845
			41	300097	45387

Helmert has pointed out that in the observations of $1874 \mathrm{~V}^{\prime}$ seems to diminish as $(2 n-1)$ increases; whence he infers that*

$$
\begin{equation*}
\mathrm{V}^{\prime}=\mathrm{V}^{\prime}+\frac{y}{2 n-\overline{\mathrm{I}}} \tag{93}
\end{equation*}
$$

where \mathbf{V} is the true velocity of light, and y is a constant depending upon the conditions under which the experiments were made. If we put

$$
\begin{equation*}
\mathrm{V}=\mathrm{C}+x \quad \mathrm{~V}^{\prime}=\mathrm{C}+m \tag{94}
\end{equation*}
$$

and substitute these values in (93), the observation equations for determining V take the form

$$
\begin{equation*}
\mathrm{o}=x+\frac{y}{2 n-1}-m \tag{95}
\end{equation*}
$$

and the weighted normal equations will be of the form

$$
\begin{align*}
& \mathrm{o}=[p] x+\left[\frac{p}{2 n-1}\right] y-[p m] \tag{96}\\
& \mathrm{O}=\left[\frac{p}{2 n-\mathrm{I}}\right] x+\left[\frac{p}{(2 n-1)^{2}}\right] y-\left[\frac{p m}{2 n-\mathrm{I}}\right]
\end{align*}
$$

Applying this to the observations made in 1872 , with $\mathrm{C}=2984$, the weighted normal equations are

$$
\begin{aligned}
& \mathrm{o}=+\mathrm{I} 2582 \cdot 00 x+\mathrm{I} 724.730 y+\mathrm{I} 88 \cdot 200 \\
& \mathrm{o}=+\mathrm{I} 724.73 x+255.969 y+63.482
\end{aligned}
$$

and their general solution is
where

$$
\begin{aligned}
& x=-0.001040912 \mathrm{P}+0.007013710 \mathrm{Q} \\
& y=+0.007013710 \mathrm{P}-0.051165396 \mathrm{Q}
\end{aligned}
$$

Whence

$$
P=+188.200 \quad Q=+63.482
$$

$$
\begin{align*}
& x=+0.249344700 \pm 0.8447 \\
& y=-1.928 \text { IOI } 447 \pm 5.9223 \tag{97}\\
& \mathrm{~V}=298649.3 \pm 844.7 \text { kilometers }
\end{align*}
$$

with which the residuals in the normal equations are

$$
+0.000606+0.000085
$$

the residuals in the weighted observation equations are

$$
\begin{array}{lll}
-51.73 & +1153 & +29.62 \\
+25.82 & -2526 & -32.19
\end{array}
$$

and the probable error of an observation of weight unity is ± 26183 kilometers.
Similarly, for the observations made in 1874 , with $\mathrm{C}=300000$, the weighted normal equations are

$$
\begin{aligned}
& 0=+294402 x+\text { II } 808 y-5 \text { I OI } 2357 \\
& 0=+ \text { II } 808 x+546 y-245568 \mathrm{I}
\end{aligned}
$$

and their general solution is

$$
\begin{aligned}
& 100 x=-0.002561621 \text { I } P+0.0553985742 Q \\
& 100 y=+0.0553985742-1.3812204464
\end{aligned}
$$

where

$$
\mathrm{P}=-51012357 \quad \mathrm{Q}=-245568 \mathrm{I}
$$

Whence

$$
\begin{align*}
& x=-53 \cdot 668960 \pm \text { I I I } 8 \text { kilometers } \\
& y=+5658 \cdot 249626 \pm 2595 \text { kilometers } \tag{98}\\
& \mathrm{V}=299946 \cdot 3 \quad \pm \text { I I } \cdot 8 \text { kilometers }
\end{align*}
$$

with which the residuals in the normal equations are +5.4 and $+0^{\circ} 2$; the residuals in the weighted observation equations are

$$
\begin{array}{lll}
+17009 & +3420 & +20897 \\
-2251 & -25694 & +43500 \\
+21194 & -12247 & +4287 \\
-79091 & -25102 & +45423 \\
+20395 & -16975 & -2698 \\
+32517 & -38006 &
\end{array}
$$

and the probable error of an observation of weight unity is ± 22080 kilometers.

The values of V in (97) and (98) require to be multiplied by 1000273 in order to reduce them to what they would have been in a vacmum; and thus we find

$$
\begin{aligned}
& 1872 . V=298731 \pm 845 \text { kilometers }=185624 \pm 525 \text { miles } \\
& 1874 . V=300028 \pm 112 \text { kilometers }=186430 \pm 69^{\circ} 5 \text { miles }
\end{aligned}
$$

which we shall employ instead of the numbers given by Corxu himself.
Collecting our results, we now have the following measurements of the velocity of light in vacuo per second of mean solar time, together with their estimated weights:

Fizenu's measurement is rejected on the gromed that he himself regarded it as only a preliminary attempt. The weighted mean of all the other measurements gives

$$
\begin{equation*}
\mathrm{V}=299835 \pm \mathrm{r} 54 \text { kilometers }=186310 \pm 95^{\circ} 6 \text { miles } \tag{99}
\end{equation*}
$$

But if we consider only the four measurements whose weight is greater than unity, their weighted mean will give

$$
\begin{equation*}
\mathrm{V}=299893 \pm 23 \cdot 0 \text { kilometers }=186347 \pm 143 \text { miles } \tag{100}
\end{equation*}
$$

Thus it appears that in either case we arrive at substantially the same value of V , but with widely different probable errors. We shall adopt the value (100), with a probable error equal to the difference between (99) and (ió), namely,

$$
\begin{gather*}
\mathrm{V}=299893 \pm 58 \text { kilometers }=\text { I } 86347 \pm 36 \text { miles } \tag{101}\\
\text { 18.-MASSES OF THE PLANETS. }
\end{gather*}
$$

We need the mass of the Earth as one of the elements for finding the solar parallax, and the masses of all the other planets are required in computing the luni-solar precession from the general precession. The following are some of the most noteworthy determinations of these masses; others may be found in Houzeau's VadeMecum de l'Astronomie.

Reciprocals of the mass of Mercury.

1782. La Grange, from his hypothetical relation between the densities of the planet and their distances from the Sun. (167, 1). 190.)

$$
2025810
$$

1841. Encke, from the perturbations of the comet which hears his mame, during tis appartions in 1 \&ig. 1825, 1828, 1835 , and 1838 , before perhelion. (153, p. 5.)
(a) From the normal places in 1828 to 1848 , exclucling those of 1818,1822 , ant 1 S $25 .(156, p \cdot 47$). 10252900
(b) From the normal places before perhelion in 828 to 1848 , exeluding thowe of $1518,1822,1825$, 1832, and May, IS42. ($156, \mathrm{p} .49$.)
(c) From the normal places, 1818 to 1838 , without distinction. (156 , p. 51.) 3200448
(d) From all normal places without distinction, 181 IS to 1 S48. (156, p. 51.) 3271742

6987-3

1842. Rotinany, from the motion of the perhelion of lenus. ($184, \mathrm{p}, 18$.). 3182843
1843. Le Verrier, from the perturbations of Vemus. (1;1. p. 12 .) 5310000
1844. L.e Verrier, in his tables of Mars. (8, T. 6, pp. 21 and 308.) 4316547
1845. Tissfrand, upon rediscussing certain of Le Terrier's equations, found that they were capable of two solutions. (IS9, p. 656.)
The one which he regarded as most probable gave 7100000
3800000
1846. NewCOMb, by estimation, from a consideration of all the data. (i77, p. 468.) 7500000
Reciprocals of the mass of Tenus.
1847. La Grange,
From the motion of the Earth's perhelion. ($166, \mathrm{p} .115$.) 315517
From the periodic perturbations of the Earth. (166, p. 116.) 341413
1848. La Place, from the secular diminution of the obliquity of the ecliptic. (7, T. 3, liv. 6, chap. 6, \& 21.) 383 138
1849. Delanhre, from the perturbations of the Earth. (7. T. 3, liv. 6, chap. 16.) 356632
1SO3. Wural, from observations of the Sun. (191, p. 153.) $326 S_{49}$
1850. Burckhadit, from the pertuabations of the Earth. (i5i, p. 343.) 401839
18i3. LiNDENAL, from the secular motions of the node and perhelion of Mercury. ($173, \mathrm{p} .30$.). 349440
1851. Aiky, from observations of the Sun made at Greenwich. (I 42, p. 30.). 401211
1852. RuTINAAN, from the secular motion of the node of Mercury. (I84, P. ISI.) 362017
1853. Le V'ERRIER, from his equations for corrcting the elements of Mercury. (169, p. 354.) 390000
1854. HANSLN and Oll'FSEN, in their tables of the Sun. (40, p. I.) $40 \$ 134$
185S. Le li:krier, in his tables of the Sun. (41, p. 102.) 400246
iS6i. Le Vfrrrier, in his tables of Mars. (8, T. 6, p. 309.) 412150
IS72. Hil.i, from the motion of the node of Venus. ($162, \mathrm{p} .36$.) 427240
1S76. Pulvatiky, from observations of the Sun, marle at Dorpat. (i\$1, p. 265.). 396980
iS81. Tisserand, from the variation of the obliquity of the ecliptic. (i89, p. 658.) 425500
1855. Newcomb, by estimation, from a consideration of various results. (177, p. 472 .) 405000

Reciprocals of the mass of the Earth.

[Values of the Earth's mass obtained from the solar parallax do not come imto consideration herc.]
IS 32. PlaNA, from the parallactic inequality of the Moon. (63, T. 3, p. 20.) (\oplus without © .) . . . 352359
1S63. LlaNsen, from the parallactic inequality of the Moon. (222, p. I1.) (\oplus without (.) 319455
IS72. J.E VERRIER, from the action of the Earth on the other planets. (172, p. 169.) ($\oplus-$ (.) 324490
188i. Tisserand, from a rediscussion of Le Verrier's equations. ($189, \mathrm{p} .65 \mathrm{~S}$) ($\oplus+$ (.) 325700

Reeimrocals of the mass of Mars.

1782. La Grange, from his lypothetical relation between the densities of the planets and their distances
from the Sun. (167 , p. 190.) . $8460 \mathrm{~S}_{2}$

1SO2. Delambre, from the perturbations of the Eath. (7, T. 3 , lit. 6, chap. 16.) 2546320
1813. Burckharitt, from the perturbations of the Earth. (151, p. 343.) 2680337

1S27. AIRy, from observations of the Sun made at Greenwich. (I42, p. 30.) 3734602
1S53. HANSEN and OLIFSEN, in their tables of the Sun. (40, p. I.) 3200900
1858. Le Verrifk, in his tables of the Sun. (41, p. io2.) 2994790
iS76. Powaikr, from observations of the Sun made at Dorpat. (i Si, p. 265.) 2876000
i S76. Le Verkier, in his tables of Jupiter. (8, T. 12, p. 9.) 2812526
18-8. A. Hall, from his own observations of the elongations of the satellites. (158, p. 37.) 3093500 ± 3295

Reciprocals of the mass of .Tupiter.

1726. Newtox, from the elongations of the fourth satellite, observerl by l'ocNiv. (9, lib. 3, prop. 8, cor. 2.). 1067
1727. L. Gravie, from a recomputation of the same observations. ($167, \mathrm{p}, 183$.) 1067195
1728. La P1..icl, from the same olservations. (7, T. 3, liv. 6, chap. 6, 2 21.) I 067.09
1729. BOUSARI), from the perturbations of Saturn. ($150, \mathrm{p}$. ij; compare also S, T. 12, pp).67-70.) . . . 1070.5

I 823 . Nicolial, from the perturbations of Juno. (17 S, p. 226.) 1053.924
1826. 1.NCK... from the perturbations of Vesta. (152, p. 267.) 105036
1837. AIR 4 , from elongations of the fourth satellite, observed by himself. (143. p. 47.) 104677
1842. Bessifi, from his heliometer measurements of the elongations of the fourth satellite. (147, p. 64.) . . 1047.879 ± 0.158

1 872 . MinaIf K , from the perturbations of FiyF's Comet. ($175, \mathrm{p} .95$.)

18S1. sithr, from his heliometer measurements of the elongations of all the four satellites. (186, 1. 293.) 1047.788 ± 0.185
$10475,3^{8} \pm 0.052$
1047.232 10.24^{15}

188S. HakRHII., from the perturbations of WiNvicke's Comet. (157, p. 262.)

Reciprocals of the mass of Saturn.

Recimrocals of the mass of Tramus.
1789. WLrm, from Iterschei's measurements of the clungatons of the exterior satellite. (190, p. 214.) . 16959

1So2. La Place, from the same obscrvations. (7, T. 3, liv. 6 , chap. 1, \%23) 19504
182i. Boutarn, in his Tables astronomiques. ($150, \mathrm{p}$. ij.) 17918
183S. LaMoNt, from his measurements of the elongations of the second and fourth satcllites. (IGS. p. 59.) . 24605
1871. VoN Asten. from elongations of Oberon and Titania, observed by Lamus r, (). Stertie, Lassell, and Marth. (144, p. 21.)
$22-0$
1875. Lord Rosse and Dr. Copelaidd, from their observations of Oberon and Titania. (iS2, p. 304.) . . . 2.4000
1875. NewCOMm, from his observations of the elongations of all the four satellites. ($170, \mathrm{p} \cdot 36.) \ldots 2240 \pm 50$
1885. A. Hall, from his observations of the elongations of Oberon and Titania. (159. p. 33.) 22682 ± 27

Reciprocals of the mass of Neptune.
1847. O. Struve, from his own observations of the satellite. (ISS, p. S15.) 14494
1848. B. PeIRCE, from the perturbations of Uranus. (179. p. 205.) 20000
1849. Hind, from elongations of the satellite, measured by l3ond, Lasseri, and O. Struve. (163, p. 203.) 17900
1850. G. P. Bovid, from elongations of the satellite, observed at Cambridge, JIass. (149, p. 3S.) ig 400
1854. IIIND, from elongations of the satellite, observed by Lasseli. in 1 S52. (164, p. 47.) 17135
1862. SAFFOK1), from the perturbations of Uranus. (185, p. 144.) 20039 ± 295
1875. Newcomi, from his own observations of the elongations of the satellite. (176, p. 63.) 1938 ± 70
1885. A. H.all, from the clongations of the satellite (160, p. 26) :
(a) From his own observations
19092 ± 64
(b) From Holdex's observations

IS 279 ± 114
(c) From Lassell and Marth's observations 17 850 ± 1 So

The various values given above for the masses of Mercury and Vemus differ so largely among themselves that no trustworthy result can be deduced from them, and a rediscussion of the original data seems the only satisfactory course. For the masses of the planets outside the Earth the following numbers will be adopted:

$$
\begin{align*}
\text { Mass of Mars } & =\frac{1}{3093500} \tag{IOO}\\
\text { Jupiter } & =\frac{1}{1047 \cdot 55} \tag{3}\\
\text { Saturn } & =\frac{1}{3501 \cdot 6} \tag{IO4}\\
\text { Uranus } & =\frac{1}{22600} \tag{105}\\
\text { Neptune } & =\frac{1}{18780} \tag{106}
\end{align*}
$$

Number (IO2) is Professor Hallis value. For the mass of . Thpiter the arithmetical mean of the values given by Bessel, Möller, Kriterbi. Shatr, and Haerdtl is I : I O47.522, while the mean of the two values given hy Brasse and Sonte is i : 1047555 . Number (103) is sensibly the latter value. According to H. Strive,*

[^9]the revised value of Bessel's mass of Saturn is $1: 3502.5$. The mean of that, and the value found by Mr. A. Halı, Jr., is $1: 3501{ }^{\circ} 5$, which differs so little from Bessel's own value that the latter has hecr1 retained in (104). Number (105) is very nearly the arithmetical mean of the values given by Newcomb and Hall, and (106) is almost the arithmetical mean of the values given by Boxd, Newcomb, and Hall, the latter including the observations by Holden, Lassell, and Marth.

We now proceed to determine the masses of Mercury, Venus, and the Earth from the perturbations, both periodic and secular, of these planets and of Mars. To facilitate the discussion of the motions of the nodes of Mercury and Venus, let
$\delta_{8}=$ longitude of the planet's ascending node,
$\delta_{0}=$ approximate value of δ_{0}, such that $\delta_{0}=\delta_{0}+\Delta \delta_{\delta}$,
$m=$ mass of the planet,
$m_{0}=$ approximate value of m, such that $m=m_{0}(1+v)$,
$i=$ inclination of the planet's orbit to the plane of the ecliptic,
$t=$ time in Julian years of $365 \frac{1}{4}$ days, counted from a specified epoch,
$d \lambda \odot=$ correction to the assumed value of the Sun's longitude,
$\pi \beta \odot=$ correction to the assumed value of the Smu's latitude,
$d i=$ correction to the assumed value of i,
δp and $\delta q=$ certain coefficients whose numerical values are given by Le Verrier in the Amales of the Paris Observatory, Tome 2, pp. 100-102.
Further, let symbols relating to the different planets be distinguished by superior Roman numerals, in the usual way, those relating to Mercury being without any numeral, while those which relate to Venus are marked ', those which relate to the Earth ${ }^{\text {ii }}$, and so on to Neptune, symbols relating to which will be distinguished by the mumeral vii.

In order to make use of Professor Newconm's investigation of the longitude of the node of Mercury, let us put

$$
\begin{equation*}
\delta_{0}=\delta_{v}+J_{8} \tag{107}
\end{equation*}
$$

where the value of δ_{0} is that given by Le Terrier for the epoch $1850^{\circ} 0$, in lis tables of Mercury,* namely,

$$
\begin{equation*}
\delta_{0}=46^{\circ} 33^{\prime} 08 \cdot 75^{\prime \prime}+42 \cdot 643^{\prime \prime} t+0.0000835^{\prime \prime} t^{2} \tag{108}
\end{equation*}
$$

From a discussion of 23 transits of Mercury, occurring between the years 1677 and 1881, Newcomb found for the epoch $18200 \dagger$

$$
N=N_{0}+N^{\prime} t=-0.16^{\prime \prime} \pm 0.18^{\prime \prime}+\left(0.28^{\prime \prime} \pm 0.42^{\prime \prime}\right) t
$$

Whence, for the epoch is 50°

$$
\begin{aligned}
N & =-0.16^{\prime \prime} \pm 0.18^{\prime \prime}+\left(0.28^{\prime \prime} \pm 0.42^{\prime \prime}\right) \frac{1850-1820}{100}+\left(0.28^{\prime \prime} \pm 0.42^{\prime \prime}\right) t \\
& =-0.076^{\prime \prime} \pm 0.220^{\prime \prime}+\left(0.28^{\prime \prime} \pm 0.42^{\prime \prime}\right) t
\end{aligned}
$$

Newcomb wrote

$$
\mathrm{N}=\left(\delta \theta-\delta l^{\prime}\right) \sin i
$$

but, as δl^{\prime} can not be evalued, when the unit of time is changed from a century to a year this may be regarded as equivalent to

$$
\Delta_{\delta}=\frac{\mathrm{N}_{0}}{\sin i}+\frac{\mathrm{N}^{\prime} t}{100 \sin i}
$$

which, with $i=7^{\circ}$ oo $07^{\prime} 7^{\prime \prime}$, and the above mumerical value of N , gives

$$
\begin{equation*}
\Delta_{8}=-0.623^{\prime \prime} \pm 1 \cdot 805^{\prime \prime}+\left(0.023^{\prime \prime} \pm 0.034^{\prime \prime}\right) r \tag{IO9}
\end{equation*}
$$

By substituting (ro8) and (rog) in (107), we obtain definitively for Mercury

$$
\begin{equation*}
\delta=46^{\circ} 33^{\prime} 08 \cdot 13^{\prime \prime} \pm 1 \cdot 80^{\prime \prime}+\left(42 \cdot 666^{\prime \prime} \pm 0.034^{\prime \prime}\right) t+0.0000835^{\prime \prime} t^{2} \tag{110}
\end{equation*}
$$

where t is counted in Julian years of 365.1 days, from 18500 , l'inis mean time.
Passing next to Vems, Encke found from the transit of 1761^{*}
Epoch, 1761 , June $5^{11} 17^{\text {h }} 30^{\mathrm{mm}}$ Paris mean time.

And from the transit of 1769°
Epoch, 1769 , June $3^{11} 10^{h}$ I $0^{m 1}$ Paris mean time.

$$
\text { Longitude of Sun } 732713.8
$$

Latitude of Sun 0.0

Inclination of Venus's orbit . . . 32326

$$
8^{\mathrm{i}}=74^{\circ} 36^{\prime} 08 \cdot 60^{\prime \prime}+d \lambda \odot-16.882 d \beta \odot+10.451 / \rho-0.339 / l^{\mathrm{i}}
$$

In order to reduce these results to conformity with the positions of the Sun given by the Tables du Soleil of Hansen and Olufsen, and to the inclination of the orbit of Vemus given by Hill's tables of that planet, we take from the latter work, Introduction, pp. 2 and 23:

Whence, by comparison with Excke's results, and from Hill's tables of Venus,

	Transit of 1761.	Transit of 1769.
	$\begin{gathered} \prime \prime \prime \\ +2 \cdot 45 \end{gathered}$	$\begin{gathered} \prime \prime \prime \\ +0.45 \end{gathered}$
${ }^{1} \beta$	-0.07	+0.04
dii	+ $5 \cdot 64$	+5.94
Perturbations of Venus in latitule	+0.060	$+0.084$
	- ' 1	- ,
Excke's observed δ^{i}	$743154 \cdot 46$	$743^{6} 08 \cdot 60$
Correction for $d \%$	+2'45	+0.45
Correction for d d ${ }^{\circ}$	+1.182	-0.675
Correction for di ${ }^{\text {i }}$	+1.765	-2.014
Correction for perturbations	+1.013	+1418
Corrected $8^{\text {i }}$.	$74 \quad 3200 \cdot 87$	74360778

The provisional expression for the longitude of the node of Venus, employed by Hill in the construction of his tables of that planet, was
where t is reckoned in Julian years from the epoch $185^{\circ} 0$. To this, from the meridian observations made at Greenwich, Paris, and Washington during the years 1836 to 1871 , he found the correction*

$$
\Delta \delta_{0}^{\mathrm{i}}=\frac{w}{\sin i}=+\frac{0.12^{\prime \prime}}{0.05918}=+2.028^{\prime \prime}
$$

which belongs to the epoch i855, January o*o, Washington mean time. Whence, for that epoch,

$$
\delta^{i}=75^{\circ} 22^{\prime} 35^{\circ} 78^{\prime \prime}
$$

From the 1475 photographs of the last transit of Venus, reduced by the United States Transit of Venus Commission, we have for the epoch 1882, December $6^{d} 5^{\mathrm{h}} 0^{\mathrm{mm}}$, Greenwich mean time,

$$
\delta^{\mathrm{i}}=75^{\circ} 37^{\prime} 33^{\circ} 911^{\prime \prime}+d \lambda \odot-16.868 d \beta \odot-0.321 d i^{i}
$$

This result already depends upon the position of the Sun given in the Tables du Soleil of Hinsen and Clufsen, and it requires correction only for the perturbations of Vemus in latitude. According to Hillis tahles of Venus, these perturbations amount to $+0.046^{\prime \prime}$, and the enrrected result is, therefore,

$$
\delta^{i}=75^{\circ} 37^{\prime} 34^{\circ} 69^{\prime \prime}
$$

From Hill's tables of Venus, Introduction, 1. 2, we have

$$
8^{\mathrm{i}}=75^{\circ} 19^{\prime} 53^{\prime} 10^{\prime \prime}+32.5150^{\prime \prime} t+0.000151^{\prime \prime} t^{2}
$$

where

$$
\begin{aligned}
t & =\text { (Date in Washingtom me:n time }-1850.0 \\
& =\text { (Date in Greenwich mean time) }-1850.000586
\end{aligned}
$$

Computing the values of Ω^{i} for the dates of observation by this expression, and collecting our observed results, we have

Julian date.	Computed $\Omega^{\text {i }}$	Observed $\delta^{\text {i }}$	$\mathrm{C}-\mathrm{O}$
	- , "	- , "	"
$1761 \cdot 398967$	$7+315449$	743200.87	-6.38
1769.392654	743^{6} 14.20	$7+36078$	+6.42
$1854.966{ }^{6} 63$	$752235 \cdot 66$	75223578	-0.12
1882.897900	753744.01	$753734 \cdot 69$	$+9.32$

In order to form the observation equations for the determination of the corrected expression for δ^{i}, let

$$
\begin{align*}
0=75^{\circ} 19^{\prime} 53^{\circ} 10^{\prime \prime} & +x+\left(32.5150^{\prime \prime}+y\right) t+0.000151 t^{2} \tag{III}\\
& -\left(\text { observed } \delta^{i} \text { at the time } t\right)
\end{align*}
$$

and then, by putting C for the computed, and O for the corresponding observed value of δ^{i}, we shall have

$$
\mathrm{o}=(\mathrm{C}-0)+x+t y
$$

The scale of the Julian dates given above is such that $1849^{\circ} 9670+2$ corresponds to 18500 Washington mean time. Bearing that in mind, the following observation equations result from the values of $(C-O)$:

$$
\begin{array}{ll}
0=-6.38+x-88.568 y & \text { Weight } 1 \\
0=+6.42+x-80.574 y & \text { Weight } 1 \\
0=-0.12+x+4.999 y & \text { Weight } 1 \\
0=+9.32+x+32.931 y & \text { Weight } 4
\end{array}
$$

The probable error of the observed right ascension of Vems was $\pm 0470^{\prime \prime}$ in 1761, $\pm 0.496^{\prime \prime}$ in 1769, and only $\pm 0038^{\prime \prime}$ in 1882 Therefore, according to theory the weight of the last observation eguation would be more than 150 times that of either of the first two. Nevertheless, on account of the possible existence of constant errors, it has been thought pmondent give it a weight of only four.

Having regard to the adopted weights, the normal equations are

$$
\begin{align*}
& 0=+37 \cdot 200^{\prime \prime}+7.000 x-32.419 y \tag{array}\\
& 0=+1274 \cdot 847^{\prime \prime}-32.419 x+18699^{\circ} 253 y
\end{align*}
$$

and the general solution is

$$
\begin{aligned}
& x=-0.144013468 \mathrm{P}-0.000249677 \mathrm{Q} \\
& y=-0.000249677 \mathrm{P}-0.00005391 \mathrm{IQ}
\end{aligned}
$$

in which

$$
\mathrm{P}=+37^{\circ} 200^{\prime \prime} \quad \mathrm{Q}=+1274^{\circ 8} 87^{\prime \prime}
$$

From the general solution

$$
x=-5.675601^{\prime \prime} \pm 1.973^{\prime \prime} \quad y=-0.0780162^{\prime \prime} \pm 0.0382^{\prime \prime \prime}
$$

with which values the residuals in the normal equations are respectively $0.0000^{\prime \prime}$ and $-0.0004^{\prime \prime}$, while those in the weighted olsservation equations are respectively $-5^{\circ} 146$, $^{\prime \prime}$ $+7.030^{\prime \prime},-6.186^{\prime \prime}$, and $+2.151^{\prime \prime}$.

If it is desired to use only the data afforded by transits of Tenus, we may take $\frac{1}{2}(1761+1769)$ and 1882 . In that way dp, the unknown correction to the adopted value of the Sun's semi-diameter, is sensibly eliminated from the observations of 1761 and 1769 , and our observation equations become

$$
\begin{aligned}
& \mathrm{o}=+0.02^{\prime \prime}+x-84.571 y \\
& \mathrm{o}=+9.32^{\prime \prime}+x+32.931 y
\end{aligned}
$$

Whence

$$
x=-6.714^{\prime \prime} \quad y=-0.079147^{\prime \prime}
$$

The difference between this result and that from the normal equations (112) is less than the probable error of either.

Reverting to the values of x and y yielded by the equations (I 12), and substituting them in (III), we obtain definitively for Vemus

$$
\delta^{\mathrm{i}}=75^{\circ} 19^{\prime} 47.42^{\prime \prime} \pm 1.97^{\prime \prime}+\left(32.4370^{\prime \prime} \pm 00382^{\prime \prime}\right) t+0.000 \mathrm{I} 5 \mathrm{I}^{\prime \prime} t^{2}
$$

which belongs to the epoch 1850° Washington mean time.
If we put with Le Verrier*

$$
p=\tan i \sin \delta \quad q=\tan i \cos \delta
$$

then, regarding all the quantities as variable, and differentiating

$$
\begin{aligned}
& \pi_{p}=\frac{\sin \delta}{\cos ^{2} i} d i+\tan i \cos \delta_{0} \cdot d \delta \\
& \pi_{1}=\frac{\cos \delta}{\cos ^{2} i} d i-\tan i \sin \delta_{0} \cdot d \delta
\end{aligned}
$$

whence, by eliminating di, we dind for the themetical motion of the node on the fixed ecliptic

$$
d \delta=\cot i \cos \delta \cdot\left(l_{p}-\cot i \sin \delta \cdot d_{1}\right.
$$

To find the theoretical motion on the movable ecliptie, it is only neressary to substitute $d_{p}-d_{p} p^{\mathrm{ii}}$ and $d_{q}-d_{q^{\mathrm{ji}}}$ for d_{p} and $d q$. In that way we obtain for Mercury and Venns

$$
\begin{align*}
& d \Omega=\cot i \cos \delta\left(d p-d p^{\mathrm{i}}\right)-\cot i \sin \delta\left(d l-d l^{\mathrm{ii}}\right) \tag{1.14}\\
& d \delta^{\mathrm{i}}=\cot i^{\mathrm{i}} \cos \delta^{\mathrm{i}}\left(d p^{\mathrm{i}}-\left(l p^{\mathrm{ii}}\right)-\cot i^{\mathrm{i}} \sin \delta^{\mathrm{i}}\left(d y^{\mathrm{i}}-d l^{\mathrm{i}}\right)\right. \tag{115}
\end{align*}
$$

From equations (IIo) and (II3), and from Le Verrier's tables of Mercury and Hall's tables of Vemus, we have for the epoch 1850°

$$
\begin{array}{ll}
\Omega_{i}=46^{\circ} 33^{\prime} 08 \cdot 13^{\prime \prime} & i=7^{\circ} 00^{\prime} 0771^{\prime \prime} \\
8^{i}=75^{\circ} 19^{\prime} 47^{\prime} 42^{\prime \prime} & i^{i}=3^{\circ} 23^{\prime} 35^{\circ} 01^{\prime \prime}
\end{array}
$$

By the substitution of these values, and after replacing d $d p, d p^{\mathrm{i}}, d p^{\mathrm{ii}}, d q, d q^{\mathrm{i}}$, and $d_{q}{ }^{\mathrm{ii}}$ by the mumerical values of $\delta_{p}, \delta_{p}, \delta_{p^{\mathrm{ii}}}, \delta_{q}, \delta_{q^{\mathrm{i}}}$, and $\delta_{q^{i i}}$. from the Anmales of the Paris Olservatory, T'. 2, pp. 100-10I, equations (114) and (i15) become

$$
\begin{align*}
& { }^{{ }^{d} 8}=-7.60689^{\prime \prime}-0.06590^{\prime \prime} v-4.10214^{\prime \prime} \nu^{\mathrm{i}}-0.92346^{\prime \prime} v^{\mathrm{ii}} \\
& \text {-O.112 } 38^{\prime \prime} \nu^{\mathrm{iii}}-2.28353^{\prime \prime} \nu^{\mathrm{iv}}-0.11704^{\prime \prime} \nu^{\mathrm{v}} \\
& -0.00184^{\prime \prime} \nu^{\text {vi }} \\
& \begin{array}{r}
\frac{d \delta^{\mathrm{i}}}{d t}=-\mathrm{I} 7.36793^{\prime \prime}+0.11193^{\prime \prime} \nu-5.03855^{\prime \prime} \nu^{\mathrm{i}}-6.71749^{\prime \prime} \nu^{\mathrm{ii}} \\
-0.22172^{\prime \prime} \nu^{\mathrm{iii}}-5.22275^{\prime \prime} \nu^{\mathrm{iv}}-0.27355^{\prime \prime} \nu^{\mathrm{v}} \\
-0.00418^{\prime \prime} \nu^{\text {i }}
\end{array} \tag{116}
\end{align*}
$$

Putting ψ_{1} for the general precession, the observation equations for determining the masses of Mercury, Venus, and the Earth will be of the form

$$
\begin{equation*}
o=\text { theoretical } \frac{d \delta}{d t}+\psi_{1}-\text { observed } \frac{d \delta}{d t} \tag{117}
\end{equation*}
$$

As the masses of all the planets outside the Earth's orbit are here regarded as known, the mumerical values of their ν s must be substituted in the observation equations. To find them, we have the relation

$$
m=m_{0}(\mathrm{I}+v)
$$

where m_{0} is the value employed in the observation equations for the mass of any planet. or, in other words, it is the value employed by Le Verrier in forming the quantities $\delta p, \delta q$, etc., and m is the adopted mass of the same planet. The numerical values of $\mathrm{I} \div m_{0}, \mathrm{I} \div m$ and v are given for each planet in Table III.

Table III.

Planet.	$\mathrm{I} \div m_{0}$ Le Verrier.	$\begin{gathered} \mathrm{I} \div m \\ \text { Adopted. } \end{gathered}$	$\underset{\nu}{\text { Factor }}$
Mercury .	3000000	Indeterminate	
Venus	401847	Indeterminate .	
Earth	354936	Indeterminate .	
Mars	2680337	3093500	-0.133558
Jupiter	1050	I $047 \cdot 55$	+0.002 339
Saturn	3512	$3501 \cdot 6$	+0.002970
Uranus	24000	22600	+0.061 947
Neptune.	14400	18780	-0.233 227

Taking the observed values of the motions of the nodes from equations (IIO) and (113), the theoretical values from the equations (116), and the factors for the corrections of the masses from Table III, the formation of the absolute terms of the observation equations will be as follows:

	Mercury.	Venus.
Provisional motion of node Correction for mass of Mars Correction for mass of Jupiter Correction for mass of Saturn General precession	$\begin{array}{r} 11 \\ -\quad 7.60689 \\ +\quad 0.01501 \\ -0.00534 \\ -0.00035 \\ +50.23719 \end{array}$	$\begin{aligned} & -17.36793 \\ & +\quad 0.02961 \\ & -0.01221 \\ & -0.00081 \\ & +50.23719 \end{aligned}$
Theoretical $d \delta / d t$. Observed $d \delta / d t$	$\begin{aligned} & +42.63962 \\ & +42.6660 \end{aligned}$	$\begin{aligned} & +32.88585 \\ & +32.4370 \end{aligned}$
$(\mathrm{C}-\mathrm{O})=$ absolute term . . .	-0.026 4	$+0.4489$

The observation equations are therefore

$$
\begin{align*}
& 0=-0^{\prime \prime} .6659 v-4^{\prime \prime} 1021 v^{\mathrm{i}}-0^{\prime \prime} 9235 v^{\mathrm{ii}}-0^{\prime \prime} 0264 \pm 0^{\prime \prime} 034 \tag{118}\\
& 0=+0.1119 v-5.0386 v^{\mathrm{i}}-6.7175 v^{\mathrm{ii}}+0.4489 \pm 0.038
\end{align*}
$$

whence, leaving $v^{i i}$ indeterminate,

$$
\begin{aligned}
& v=+28.95 \mathrm{I} 626 v^{\mathrm{ii}}-2.495943 \pm 0.427 \\
& v^{\mathrm{i}}=-0.690234 v^{\mathrm{ii}}+0.033661 \pm 0.00575
\end{aligned}
$$

If we assume $v^{\mathrm{ii}}=+0.06663 \mathrm{I}$, then

$$
\begin{aligned}
& v=-0.566867 \pm 0.427 \\
& v^{\mathrm{i}}=-0.012330 \pm 0.00575
\end{aligned}
$$

In the Annales of the Paris Observatory, T. 6, pp 286 and 307, Le Verrier has given four equations which may be used for determining the masses of Mercury,

Venus，and the Earth．They are derived respectively from the secular motions of the perihelion，eccentricity，inclination，and node of Mars；and，after multiplication lyy 100 ， they are as follows：

$$
\begin{align*}
& 0=+0^{\prime \prime} 14 v+4^{\prime \prime} 66 v^{\text {i }}+16^{\prime \prime} 36 v^{\text {ii }}+130^{\prime \prime} 6 v^{\text {ir }}-2^{\prime \prime} .353 \\
& 0=+0.08 v+0.69 v^{\mathrm{i}}+2.06 v^{\mathrm{ii}}+18.2 \nu^{\mathrm{iv}}-1.115 \tag{II9}\\
& 0=-0.10 \nu+12.22 \nu^{\text {i }}+0.03 \nu^{\text {ii }}-13.1 \mathrm{I} \nu^{\mathrm{iv}}+0.565 \\
& 0=-0.69 v-25.60 v^{i}-6.82 v^{\mathrm{ii}}-37.15 v^{\mathrm{in}}-0.577
\end{align*}
$$

Regarding ν, ν^{i} ，and ν^{ii} as unknown，the normal equations are

$$
\begin{align*}
& 0=+0_{5121}^{\prime \prime} v+17^{\prime \prime} 1+96 \nu^{\mathrm{i}}+7^{\prime \prime} 1580 \nu^{\mathrm{ii}}+46^{\prime \prime} .6845 \nu^{\mathrm{iv}}-0^{\prime \prime} 0770 \\
& 0=+17.1496 v+826.8801 v^{\mathrm{i}}+252.6176 v^{\mathrm{ii}}+1411.9898 v^{\mathrm{iv}}+9.9411 \tag{120}\\
& 0=+7 \text { 1580v }+252.6176 v^{\mathrm{i}}+318.4065 \nu^{\mathrm{ii}}+2427 \text {.07クフ } \nu^{\text {iv }}-36.8399
\end{align*}
$$

and the general solution is

$$
\begin{aligned}
v & =-7.084439 \mathrm{P}+0.29718 \mathrm{Q}+0.0563477 \mathrm{R} \\
10 v^{\mathrm{i}} & =+1.297176 \mathrm{P}-0.039714 \mathrm{Q}+0.0023+72 \mathrm{R} \\
100 v^{\mathrm{ii}} & =+5.634770 \mathrm{P}+0.023472 \mathrm{Q}-0.4593594 \mathrm{R}
\end{aligned}
$$

in which

$$
\begin{aligned}
& \mathrm{P}=+46.6845 \nu^{\mathrm{iv}}-0.0770 \\
& \mathrm{Q}=+1411.9898 \nu^{\mathrm{iv}}+9.9411 \\
& \mathrm{R}=+2427.0777 v^{\mathrm{iv}}-36.8399
\end{aligned}
$$

By substituting the ralue of $\nu^{\text {iv }}$ from Table III these quantities become

$$
P=+0.0321 \quad Q=+13.2423 \quad R=-31.1654
$$

and then，from the general solution，

$$
\begin{aligned}
& v=-0.265744 \pm 1.511 \\
& v^{\mathrm{i}}=-0.055742 \pm 0.03576 \\
& v^{\text {ii }}=+0.148078 \pm 0.03847
\end{aligned}
$$

With these values of the v s，the residuals in the nomal equations（ 120 ）are

$$
+0.000001^{\prime \prime}+0.000055^{\prime \prime}-0.000008^{\prime \prime}
$$

the residuals in the observation equations（ing）are

$$
+0.0779^{\prime \prime}-0.8272^{\prime \prime}-0.1159^{\prime \prime}-0.0634^{\prime \prime}
$$

and the probable error of any one of the observation equations（119）is $\pm 0.5675^{\prime \prime}$ ．
We have next to deal with the following group of equations：

$$
\begin{align*}
& \mathrm{o}=0.00 v+29^{\prime \prime} .5 v^{\mathrm{i}}+225^{\prime \prime} 3 v^{\mathrm{ii}}-18.59 \\
& \mathrm{o}=-27.39 v-46.33 v^{\mathrm{i}}-51.59 v^{\mathrm{ii}}-18.02 \\
& \mathrm{o}=+14.3 v+25.5 v^{\mathrm{i}}+27.7 v^{\mathrm{ii}}+1.7 \\
& 0=+7.8 v+9.2 v^{\mathrm{i}}+153 v^{\mathrm{ii}}+3.7 \tag{I2I}\\
& 0=-0.53 v+24.6 v^{\mathrm{i}}+32.8 v^{\mathrm{ii}}-\mathrm{I} .86 \\
& 0=-1.24^{2}+40.4 v^{\mathrm{i}}+5+0 v^{\mathrm{ii}}-3.28 \\
& \mathrm{o}=+0.53 v+28.88 v^{\mathrm{i}} \quad 0.0 v^{\mathrm{ii}}+1.74
\end{align*}
$$

When Mars made its near approach to ψ^{2} Aquarii on October I, 1672 , the position of the planet was compared with that of the star by Richer at Cayenne, by Picard near Beaufort, and by Roemfr at Paris. From a very careful discussion of these comparisons, Le Verrie'r derived the equation which he has given in the Comptes Rendus, T. 75, p. 169, namely,

$$
0=+29^{\circ} 5^{\prime \prime} \nu^{\mathrm{i}}+225^{\circ} 3^{\prime \prime} v^{\mathrm{ii}}+1398^{\prime \prime} \nu^{\mathrm{iv}}-2 \mathrm{I} \cdot 86^{\prime \prime}
$$

By substituting in it the value of $v^{i r}$ from Table III, the first equation of the group (12I) results.

The second equation of the group (121) is from the Annales of the Paris Observatory, T. 6, p. 73; and is based upon the longitude of Venus deduced from Horrox's observation of the transit of that planet in December, 1639 . The third and fourth equations are from the Amales, T. 6, p. 76 ; the former being derived from the longitudes of Venus obtained from Bradley's meridian observations, and the latter from the longitudes obtained from the meridian observations made between the years i 766 and 1830. The fifth and sixth equations are from the Annales, T. 6, p. 90; the former being derived from the latitudes of Venus resulting from the observations of the transits in 1761 and 1769, and the latter from the latitudes resulting from the Greenwich meridian observations made between the years 1751 and 1830 .

In the Annales of the Paris Observatory, T. 4, p. 52, Le Verrier has given the equation

$$
\begin{equation*}
\mathrm{o}=+0^{\prime} 53^{\prime \prime} \nu+28 \cdot 88^{\prime \prime} \nu^{\mathrm{i}}+0.83^{\prime \prime} \nu^{\mathrm{iii}}+\mathrm{I} \cdot 8 \mathrm{I}^{\prime \prime} \tag{122}
\end{equation*}
$$

which he has derived from the secular diminution of the obliquity of the ecliptic. By adding the term $+16.0 I^{\prime \prime} \nu^{\text {iv }}$, from p .51 of the Annales, and substituting the values of $\nu^{\text {iii }}$ and $\nu^{\text {iv }}$ from Table III, the last equation of the group (I2I) results. In the Annales, T. 5, p. 100, and T. 6, p. 91, and in the Comptes Rendus, T. 75, p. 168, Le Verrier has given equation (122) in the form

$$
\begin{equation*}
0=+0.53^{\prime \prime} v+28 \cdot 88^{\prime \prime} \nu^{\mathrm{i}}+0.75^{\prime \prime} \nu^{\mathrm{iii}}+\mathrm{I} \cdot 72^{\prime \prime} \tag{lll123}
\end{equation*}
$$

but the difference arises solely from the circumstance that in (122) the assumed mass of Mars is 1:2680337, while in (123) it is $1: 2994790$. For further comments on the equations (I2I), Tisserand's paper in the Comptes Rendus may be consulted.*

From the group of observation equations (12I) the following normals result:

$$
\begin{align*}
& 0=+1017^{\prime \prime} .64 v+1657.55 v^{\text {i }}+1844^{\prime \prime} 16 v^{\text {ii }}+552.713 \\
& \mathrm{o}=+1657.55^{2}+6822^{\circ} 98 \nu^{\mathrm{i}}+12872 \cdot 10 \nu^{\mathrm{ii}}+235.835 \tag{124}\\
& 0=+1844^{\circ} 16 v+12872 \cdot 10 v^{\mathrm{i}}+58414 \cdot 84 v^{\mathrm{ii}}-3393 \cdot 103
\end{align*}
$$

and their general solution is

$$
\begin{aligned}
& 1000 v=-\mathrm{I} 764489702 \mathrm{P}+0553787566 \mathrm{Q}-0.066325742 \mathrm{R} \\
& 1000 r^{\mathrm{i}}=+0.553787566 \mathrm{P}-0.424651923 \mathrm{Q}+0.076091780 \mathrm{R} \\
& 1000 \nu^{\mathrm{ii}}=-0.066325742 \mathrm{P}+0.076091780 \mathrm{Q}-0.031792362 \mathrm{R}
\end{aligned}
$$

where

$$
\mathrm{P}=+552.713 \quad \mathrm{Q}=+235 \cdot 835 \quad \mathrm{R}=-3393 \cdot 103
$$

We therefore have

$$
\begin{aligned}
& v=-06196038 \pm 0.09692 \\
& v^{\mathrm{i}}=-0.0522494 \pm 0.04755 \\
& v^{\mathrm{ii}}=+0.0891608 \pm 0.01301
\end{aligned}
$$

with which the residuals in the normal equations (124) are

$$
+0.0002^{\prime \prime}+0.0008^{\prime \prime}+0.0028^{\prime \prime}
$$

The residuals in the observation equations (121) are

$$
\begin{array}{llll}
-0.043^{\prime \prime} & -6.022^{\prime \prime} & +0.107^{\prime \prime} & -0.097^{\prime \prime} \\
-3.228^{\prime \prime} & -0.250^{\prime \prime} & +0.192^{\prime \prime} &
\end{array}
$$

and the probable error of any one of the observation equations (121) is $\pm 2.307^{\prime \prime}$.
The equations in group (125) are from the Amales of the Paris Observatory, T. 4, P. 95, and depend entirely upon observations of the sum. The first equation of the group las been deduced from the differences of the maximum values of the equation of the center determined at two epochs fifty years apart. The second equation arises from the observed motion of the Earth's perigee; and the remaining equations are based upon the periodic perturbations of the Earth, the third and fifth arising from the action of Venus, while the fourth and sixth arise from the action of Mars.

$$
\begin{align*}
& 0=-0.23 v+1.01 v^{\prime \mathrm{i}}-0.65 v^{\prime \prime} v^{\mathrm{iii}}-0^{\prime \prime} .2 \mathrm{I} \\
& 0=-043 v+5.97 v^{\mathrm{i}}+1.93 v^{\text {iii }}-0.44 \\
& 0=-0.04 v+8.00 v^{\mathrm{i}}-0.13 v^{\text {iii }}-0.01 \tag{125}\\
& 0=+0.02 v+1.07 v^{\mathrm{i}}+4.00 v^{i \mathrm{iii}}+0.48 \\
& 0=-0.02 v+8.00 v^{\mathrm{i}}-0.17 v^{\mathrm{iiii}}-0.09 \\
& 0=0.00 v+0.61 v^{\mathrm{i}}+4.00 v^{\text {iii }}+0.35
\end{align*}
$$

In accordance with Le Verrier's estimate of the relative accuracy of these equathons,* the second will be given a weight of $\frac{1}{9}$. It then becomes

$$
\begin{equation*}
0=-0.14^{\prime \prime} \nu+1.99^{\prime \prime} \nu^{\mathrm{i}}+0.64^{\prime \prime} \nu^{\mathrm{iii}}-0.15^{\prime \prime} \tag{126}
\end{equation*}
$$

and, regarding $\nu^{i \mathrm{iii}}$ as known, the weighted normal equations are

$$
\begin{align*}
& 0=+0.07+9^{\prime \prime} v-0.9695^{\prime \prime} v^{\mathrm{i}}+0.1485^{\prime \prime} v^{\mathrm{iii}}+0.0811^{\prime \prime} \tag{127}\\
& 0=-0.9695^{\prime \prime} v+134.4972^{\prime \prime} v^{\mathrm{i}}+4.9371^{\prime \prime} v^{\mathrm{iii}}-0.5835^{\prime \prime}
\end{align*}
$$

The general solution is

$$
\begin{aligned}
& v=-1+72504 \mathrm{IP}-0.106143 \mathrm{Q} \\
& v^{\mathrm{i}}=-0.106143 \mathrm{P}-0.008200 \mathrm{Q}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{P}=+0.1485 v^{\mathrm{iii}}+0.08 \mathrm{II} \\
& \mathrm{Q}=+4.937 \mathrm{I} v^{\mathrm{iii}}-0.5835
\end{aligned}
$$

Hence

$$
\begin{align*}
& v=-2.710707 v^{\text {iii }}-1 \cdot 132266 \tag{128}\\
& v^{\mathrm{i}}=-0.056246 \nu^{i \mathrm{iii}}-0.003824
\end{align*}
$$

and the residuals in the normal equations (127) are

$$
\begin{aligned}
& -0.00000^{\prime \prime} \nu^{\mathrm{iii}}+0.00000^{\prime \prime} \\
& +0.00020^{\prime \prime} \nu^{2 i i}-0.00009^{\prime \prime}
\end{aligned}
$$

The substitution in (128) of the value of $\nu^{i i i}$ from Table III gives

$$
\begin{aligned}
v & =-0.770229 \pm 0.317 \\
v^{i} & =+0.003688 \pm 0.007+9
\end{aligned}
$$

with which the residuals in the weighted observation equations (125) and (126) are

$$
+0.058^{\prime \prime}-0.120^{\prime \prime}+0.068^{\prime \prime}-0.065^{\prime \prime}-0.022^{\prime \prime}-0.182^{\prime \prime}
$$

and the probable error of any one of these equations is $\pm 0.08276^{\prime \prime}$.
Collecting our results, from the groups of equations (118), (119), (121), and (125), the values of v are

$$
\begin{aligned}
& -0.566867 \pm 0.427 \\
& -0.265744 \pm 1.511 \\
& -0.619604 \pm 0.09692 \\
& -0.770229 \pm 0.317
\end{aligned}
$$

and the values of ν^{i} are

$$
\begin{aligned}
& -0.012330 \pm 0.00575 \\
& -0.055742 \pm 0.03576 \\
& -0.052249 \pm 0.04755 \\
& +0.003688 \pm 0.00749
\end{aligned}
$$

while from the groups of equations (I19) and (12I) the values of $v^{\text {ii }}$ are

$$
\begin{aligned}
& +0.148078 \pm 0.03847 \\
& +0.089161 \pm 0.01301
\end{aligned}
$$

Instead of attempting to deduce final values from these results, it will be better to reduce the various groups of equations to a miform standard of weight, and then to solve them all simultaneously. The data for that purpose are as follows:

Equations.	Probable error.	$\sqrt{ }$ llicight
Group (118) .	± 0.036	10.000
Group (119) .	± 0.567	0.635
Group (121) .	± 2.307	0.156
Group (125) .	± 0.0828	4.35

The weight of the equations in group (118) is arbitrarily assumed to be 100 , and then the weights for the other groups follow from the probable errors given in the second column. By the application of these weights, each to its nwn erroup of equations, the subjoined system of weighted observation equations is obtained:

$0.659 v-4 \mathrm{I}^{\circ} \mathrm{O} 2 \mathrm{I} v^{\prime}-9^{\circ} 23 .$	
-0.089 r + $2.050 r^{\text {i }}+10.38$	
+	
$0-0.064 \gamma+7.760 r^{\text {i }}+0.010 r^{\text {ii }}+0.330$	
$0=0.000 v+4.602 v^{\mathrm{i}}+35.147 v^{\mathrm{ii}}-2.900$	
$0=-4.273 v-7.227 \nu^{\text {i }}$ - 8.048	
$2.231 \nu+3.978 \nu^{\text {i }}+4.321 \nu^{\text {ii }}+0.265$	
$\begin{align*} & 0=+1.217 v+1.435 v^{\mathrm{i}}+2.387 v^{\mathrm{ii}}+0.577 \tag{129}\\ & 0=-0.083 v+3.838 v^{\mathrm{i}}+5.117 v^{\mathrm{ii}}-0.290 \end{align*}$	
$0=+0.083 v+4.505 v^{\text {i }} 0.000$	
=-1.000 v + 4.394 $\nu^{\text {i }} 00000 \nu^{\text {ii }}-0.535$	
$-0.609 v+8.656 v^{\text {i }}$	
$0=-0.174 v+34.800$	
$0=+0.087 v+4.654 v^{\text {i }}$	
$0=-0.087 v+34.800 v^{\text {i }}$	

The resulting normal equations are

$$
\begin{align*}
& 0=+28^{\prime \prime} 0773 v-\quad{ }^{\prime \prime} \quad 04420 v^{\text {i }}-\quad 21^{\prime \prime} 3120 v^{\text {ii }}+\quad 9^{\prime \prime} .8172 \\
& 0=-0.4420 v+72659429 v^{\mathrm{i}}+4178.6252 v^{\mathrm{ii}}-227.7718 \tag{I30}\\
& 0=-21.3120 v+4178.6252 v^{\mathrm{i}}+61477642 v^{\mathrm{ii}}-394.2509
\end{align*}
$$

and their general solution is

$$
\begin{aligned}
& 100 v=-3.576684283 \mathrm{P}+0.011349517 \mathrm{Q}-0.020113276 \mathrm{R} \\
& 100 v^{\mathrm{i}}=+0.011349517 \mathrm{P}-0.022631115 \mathrm{Q}+0.015421676 \mathrm{R} \\
& 100 v^{\mathrm{ii}}=-0.020113276 \mathrm{P}+0.015421676 \mathrm{Q}-0.026817889 \mathrm{R}
\end{aligned}
$$

where

$$
\mathrm{P}=+19.8172 \quad \mathrm{Q}=-227.7718 \quad \mathrm{R}=-394.2509
$$

We therefore have

$$
\begin{aligned}
& v=-0.655352905 \pm 0.06580 \\
& v^{\mathrm{i}}=-0.007003642 \pm 0.005235 \\
& v_{\mathrm{ii}}=+0.06661765^{2} \pm 0.005698
\end{aligned}
$$

with which the residuals in the normal equations (130) are

$$
+0.000001^{\prime \prime}+0.000002^{\prime \prime}+0.000002^{\prime \prime}
$$

The residuals in the weighted observation equations (129) are

$$
\begin{array}{lll}
-0.1600 & -0.5908 & +0.1850 \\
-0.3664 & -0.4964 & +0.0895 \\
-0.6868 & -0.9370 & -0.6835 \\
-0.6303 & -0.0715 & -0.0998 \\
+0.3278 & +0.0785 & -0.3246 \\
-0.3097 & +0.1316 & -0.4778 \\
& & -0.8186
\end{array}
$$

and the probable error of any one of the weighted observation equations (129) is $\pm 0.3479^{\prime \prime}$.

As a final check on the solution, we have the relation

$$
[n n]+[a n] v+[m n] v^{\mathrm{i}}+[c n] \nu^{\mathrm{ii}}-[v v]=0
$$

which is satisfied thus:

$$
\begin{array}{ll}
{[\mathrm{nn}]} & +41.91363 \\
{[\mathrm{an}] v} & -12.98726 \\
{[\mathrm{bn}] v^{\mathrm{i}}} & +1.59523 \\
{[\mathrm{cn}] v^{\mathrm{ii}}} & -26.26407 \\
\text { Sum } & +4.25753 \\
{[\mathrm{vv}]} & +4.2573 \mathrm{I} \\
\text { Check } & +0.00022
\end{array}
$$

It may be remarked that the weight factors were so chosen as to give a probable error of $\pm 0.360^{\prime \prime}$ for each of the observation equations in the group (129), and the fact that this probable error comes out $\pm 0.348^{\prime \prime}$ seems to indicate that the relative weights were sufficiently exact. The gth and 19 th observation equations give the largest residuals, and perhaps it might have been better to omit them, but it is not likely that their retention can have sensibly affected the corrections to the masses.

From the solution of the group of equations (129) we now lave as the definitive result of this investigation

$$
\begin{align*}
\text { Mass of Mercury } & =\frac{0.344647 \pm 0.06580}{3000000}=\frac{1}{8704559 \pm 1724742} \\
\text { Mass of Venus } & =\frac{0.992996 \pm 0.005235}{401847}=\frac{1}{404681} \pm{ }^{21} 34 \tag{I3I}\\
\text { Mass of Earth } & =\frac{1.066618 \pm 0.005698}{354936}= \\
& =\frac{1}{332768 \pm 1778}
\end{align*}
$$

Or, expressed decimally,

$$
\begin{align*}
& \text { Mass of Mercury }=0.000000114882 \pm 0.000000021933 \\
& \text { Mass of Venns }=0.000002471082 \pm 0.000000013027 \tag{132}\\
& \text { Mass of Earth }=0.000003005097 \pm 0.000000016056
\end{align*}
$$

With respect to the data employed in these determinations, transits of Mereury have been used down to 1882 , transits of Venus to 1883 , meridian observations of Mercury to 184^{2}, meridian observations of Venus to 1871 , meridian observations of the Sun to IS50, and meridian observations of Mars to i858. Since these dates there have accumulated 47 years of meridian observations upon Mercury, is years upon Venus, 39 years upon the Sun, and 31 years upon Mars; but to utilize them exhanstively for determining the masses of the three interior planets would necessitate an amount of labor almost equivalent to computing new tables of Mercury, Venus, the Sun, and Mars.

Some explanation seems desirable respecting the method of computing the probable errors of the planetary masses in (131) and (132). The expressions for these masses are of three forms, which may be written

$$
\begin{align*}
& m=\frac{a \pm b}{c}=\frac{a}{c} \pm \frac{b}{c} \tag{133}\\
& m=e \pm f \tag{I34}\\
& m=\frac{1}{y \pm h} \tag{135}
\end{align*}
$$

Whichever of these forms is employed, it is clear that when the probable error is added to, and subtracted from, the most probable value of the mass, the resulting limiting values should be the same. That condition is manifestly fulfilled by the forms (I33) and (I34), and in order that it may be fulfilled by the form (I35) we must have
and also

$$
\begin{align*}
& (a+b) / c=1 /(g+h) \tag{136}\\
& (a-b) / c=1 /(g-h)
\end{align*}
$$

The form (I35) is usually derived from (I33) by the binomial theorem, thus

$$
\begin{equation*}
\frac{a \pm b}{c}=\frac{\mathrm{I}}{\frac{c}{a}\left(\mathrm{I} \pm \frac{b}{a}\right)^{-1}}=\frac{\mathrm{I}}{\frac{c}{a} \mp \frac{c b}{a^{2}}+\text { etc }} \tag{137}
\end{equation*}
$$

all terms of the expansion beyond the second being neglected; and for that reason the formula so obtained is sufficiently exact only when b is small compared with a. To obtain a more general expression, we remark that as the maximum and minimum values of (I33) are

$$
\frac{\mathrm{I}}{\frac{c}{a+b}} \text { and } \frac{\frac{1}{c}}{\frac{c-b}{a-b}}
$$

we may write

$$
{ }_{2} h=\frac{c}{a+b}-\frac{c}{a-b}=-\frac{2}{a^{2}} \frac{c b}{-b^{2}}
$$

and therefore, very approximately

$$
\begin{equation*}
\frac{a \pm b}{c}=\frac{1}{\frac{c}{a} \mp \frac{c b}{a^{2}-b^{2}}} \tag{I38}
\end{equation*}
$$

As c / a is not precisely equal to

$$
{ }_{2}^{1}\left(\frac{c}{a+b}+\frac{c}{a-b}\right)
$$

formula (138) does not rigorously fulfill the conditions (136), but it is far more exact than (137) when b is not small relatively to a, and as b diminishes the results given by (137) and (138) tend to become identical.

By reasoning similar to that employed in deducing formula (138), it is easy to obtain

$$
\begin{equation*}
c \pm f=\frac{1}{\frac{1}{e} \mp \frac{f}{e^{2}-f^{2}}} \tag{I39}
\end{equation*}
$$

which is required in passing from form (134) to (135). Also, for passing from (I35) to (I34)

$$
\begin{equation*}
\frac{\mathrm{I}}{g \pm h}=\frac{1}{g} \mp \frac{h}{g^{2}-h^{2}} \tag{140}
\end{equation*}
$$

But if h has been derived through the forms (138) or (139), as is usually the case, then according to (533) the probable error is $\pm b / c$, and by expressing that quantity in terms of g and h we find, with all needful accuracy

$$
\begin{equation*}
\frac{\mathrm{I}}{g \pm h}={ }_{g}^{\mathrm{I}} \mp \frac{h}{g^{2}}\left(\mathrm{I}-\frac{h^{2}}{g^{2}}\right) \tag{141}
\end{equation*}
$$

19.-TRIGONOMETRICAL DETERMINATIONS OF THE SOLAR PARALLAX.

Observations of Mars, when in opposition to the Sun, and at its least distance from the Earth, constitute one of the oldest trigonometrical methods of determining the solar parallax. There are two ways of making the observations. Either the planet is observed on or near the meridian, at two stations sitnated respectively, in the northern and southern hemispheres; or it is observed soon after rising, and just before setting, at a single station. The first method will be termed the merirlian method, the second the diurnal method. In the meridian method the observations may be made either with a transit circle, or with a micrometer attached to an equattorial telescope. In the diunal method they may be made either with an equatorial telescope, or with a heliometer.

The values of the solar parallax resulting from some of the most noteworthy attempts by the meridian method are as follows:

```
1672. J. D. CASSIN1 (I96, p. 114) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5
1751. La Caille (Ephémérides des mouvements cèlestes depuis 1765 jusqu'en 1774. Paris. Introduction, p. 1) . . 10.38
1835. Henderson (224, p. 103) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9028
1836. Taylor (265, p. 71) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92253
1856. GILI.lSS and Gould (216, p. cclxxxviij) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }849
1863. WinNecke (269, p. 264) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8964
1865. E. J. Stone (252, P. 97) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8. 843
1865. Asaril Hall (217, p. lxiv) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.842
1867. Newconle (232, p. 22) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8855
1879. Downing (198, p. 127) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.960
1881. Eistman (200, p. 4I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &. &953
1882. E. J. StONe (264, p. 300) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S.95
```

The following are some of the results from the diurnal method:

Owing to the comparative nearness of the asteroids, and their small, well-defined disks, it has been thought that the solar parallax might be accurately derived from observations made upon them in the manner just described for Mars. Several attempts in that direction are now in progress, but the following are believed to be all the results hitherto published:

```
1875. Galim, from Flora (211, p.7, and 213, p.67)
    8.S73
1877.Lord Lindsay and Dr. Gill, from Juno (230, p. 21i)
```

The same method has also been applied to Mercury and Venus, but there are great difficulties in the way of obtaining satisfactory results from these planets.

Transits of Venus. - Until comparatively recently, astronomers hare beliered that transits of Venus furnish by far the most accurate means of determining the solar
parallax. Such transits have been observed by three different methods, namely: (1) by noting the times of contact between the limbs of Venus and the Sun; (2) by observing the position of Venus upon the Sun's disk with a heliometer ; (3) by photographing the Sun with Venus upon its disk, and subsequently measuring the photographs.

Contact Observations.-The following are some of the results for solar parallax obtained by different astronomers from contact observations of the transits of Venus in 1761, 1769, 1874, and •1882:

Transit of 1761.

Transit of 1769.
1769. Euler (2031/2, p. 5^{18}) 8.80
1771. IIornsby (226, p. 579) $8 \cdot 78$
1771. La LaN゙ue (227, p. 798) $8 \cdot 62$
1771. Maskeline (12, vol. 1, p. 413) $8 \cdot 723$
1772. LeNELL ($2291 / 2$, pp. 661 and 672) 8.63
1772. Pingré (240, p. 419) 8.50
1772. Planman (5, p. 407) 8.43
1786. Du SÉJour (199, p. 486) $8 \cdot 851$
1814. Delambre (3, T. 1, p. xliv) S.552
1815. Ferrer (208, p. 286) $8 \cdot 58$
I865. PuWalky (244, p. 22) $8 \cdot 832$
1868. E. J. Stone (256, p. 264) 8.91
Transits of 1761 and 1769.
1835. Encke (203, p. 309) 8.571
Transit of 1874.
1
1877. AIR1, from British ohservations (193, p. 16) 8.754
1878. E. J. STONe, from British observations (261, p. 294) 8.584
1878. Tupman, from British observations (267, p. 455) 8.846
1SSi. PUISEUX, from French observations (247, p. 487) 8.93
18Si. E. J. Stone, from French observations (263, p. 328) 8.88
Transit of 1882.
1887. E. J. Stone, from British observations (251, p. 7) 8.832
1887. Cruls, from Brazilian observations (197, p. 1237) S. 808

The large differences in the parallaxes obtained by different astronomers from the same observations are due to the circumstance that, as the instants of contact are rendered uncertain by the intervention of various disturbing phenomena, many of the observers record two or three different times, corresponding to as many different phases which they endeavor to describe, and thus the resulting parallaxes are influenced to a certain extent by the interpretation put upon these descriptions. The interior contacts give better results than the exterior ones, but in any case the probable error is large. From 6 i selected observations of interior contacts of the transit of 1874 , discussed by Colonel Tupman,* the present writer found the probable error

[^10]of an obsersed time of contact to be $\pm 459^{9}$, which corresponds to a probable error of $\pm 0.15^{\prime \prime}$ in the distance between the centers of the Sun and Venus. Actual errons of from 20 to 30 seconds in the observed times of contacts are by no means uncommon.

Observations with Heliometers.-A few heliometers were used in olserving the transits of 1874 and 1882 , but until the resulting values of the solar parallax are published the aceuracy of their work can not be satisfantorily estimated.

Photographic Obscrations.-For observing the transit of 1874 photography was extensively employed by the English, French, German, and United States parties, but the photoheliographs used by the English and Germans differed radically from those used by the French and Americans. In the subsequent measurement of the pictures the English and Germans failed to obtain satisfactory resnlts, while the Americans, and apparently the French also, succeeded completely; and thus it came about that no photographs of the transit of $1 S 82$ were attempted either hy the English or by the Germans, while the Americans and French took many hundreds. So far as known, the following are the values of the solar parallax yielded by the photographs:

Transit of 1874.

Transit of 1882.
188S. HARKNESS, from the United States photographs
It may be well to add that Todd's result depends upon 213 photographs, Obrecur's upon $S 2$ dagnerreotypes, and that of the present writer upon 1475 photographs. The multiplication of the square ronts of these numbers by the respective probable errors of the results gives $\pm 0.496^{\prime \prime}, \pm 0.544^{\prime \prime}$, and $\pm 0.461^{\prime \prime}$ for the probable error of a single picture.

Discussion of Results.-To facilitate the determination of a definitive value from the foregoing results, they have been re-arranged in Table IV, the construction of which will now be explained.

Of the many reductions of the observations of the transits of Venus in 1761 and 1769 , all made prior to Encke's time are more or less incomplete, and will therefore be ignored. In dealing with the remaining reductions of contact observations it must be borne in mind that within certain limits the value obtained for the parallax depends upon the meaning attached by the computer to the records made by the various observers, and as these records will frequently bear more than one interpretation, the mean of the conclusions reached by several thoroughly competent computers must generally have a higher degree of probability than the conclusion of any one of them. Accordingly, the numbers entered in Table IV are, for the transits of 1761 and 1769 , the mean of the results obtained by Exche, Powalky, and E J. Stone; for the transit of 1874 , the mean of the five results obtained by Airy, E. J. Stone, Tupmax, and Puiseux; and for the transit of 1882 , the mean of the results obtained by E. J. Stone and Cruls, giving the former double weight.

Table IV.- Talues of the Solar Parallax obtained by Trigonometrical Methods.

From the photographs of transits of Venus the results given are, for the transit of 1874 the mean of the values found by Tond and Obrecht, giving the former double weight, and for the transit of 1882 the result found by the present writer for the U. S. Transit of Venus Commission.

The early observations of Mars for parallax have been ignored because they were made with insufficient instrumental appliances. With respect to the values entered in Table IV, for the opposition of 1832 there exist only the determinations by Henderson and Tarlor, and for the opposition of 1849-'50 only the determinations by Gilliss and Gould, and by W. C. Bowd. For the opposition of 1862 the results obtained by E. J. Stone and Winnecke rest upon but a small part of the data used by Netrcomb, and therefore only the results obtained by Newconib and A. Hall require consideration. Similarly, for the opposition of 1877 we have to deal only with the results obtained by Eastian, Gill, and M. Hall, because Downing employed a very small part of the data used by Eastian, and E. J. Stone's paper is virtually an indorsement of Eastman's result.

It is believed that the numbers in Table IV fairly represent all the material now in existence for the trigonometrical determination of the solar parallax. What is the most probable result that can be obtained from them? The arithmetical mean of all the values gives

$$
\begin{equation*}
p=8.837^{\prime \prime} \pm 0.0614^{\prime \prime} \tag{142}
\end{equation*}
$$

The means of the results from observations of Mars are, from the oppositions of 1832 and 1849-'50,

$$
p=8.845^{\prime \prime}
$$

and from the oppositions of 1862 and 1877

$$
p=s \cdot 844^{\prime \prime}
$$

Nevertheless, the four values resulting from the oppositions of 1832 and $1849-{ }^{\prime} 50$ are so discordant that they should probably be rejected. Doing so, the arithmetical mean of all the other values in Table IV gives

$$
\begin{equation*}
p=8 \cdot 8_{34^{\prime \prime}} \pm 0 \cdot 0086^{\prime \prime} \tag{143}
\end{equation*}
$$

Again, taking the means according to the methods of observation, we obtain

and the arithmetical mean is

$$
\begin{equation*}
p=s \cdot s_{33^{\prime \prime}} \pm 0.0056^{\prime \prime} \tag{144}
\end{equation*}
$$

Finally, considering only the results which seem most likely to be free from constant errors, we have

$$
\begin{aligned}
& \text { From photographs of transits of Venus, } 1874 \cdots p=s^{\prime \prime} \cdot 59 \\
& \text { From photographs of transits of Venus, } 1882 \text {. . } p=88842 \\
& \text { From Gile's observations of Mars } p=8 \cdot 7 \text { © } \\
& \text { From Galle's observations of Flora } p=8.873 \\
& \text { From Gill's observations of Juno } p=8.765
\end{aligned}
$$

and the arithmetical mean is

$$
\begin{equation*}
p=8.824^{\prime \prime} \pm 0.0146^{\prime \prime} \tag{145}
\end{equation*}
$$

Except in the magnitude of their probable errors, these four means scarcely differ from each other : but so far as there is any choice among them, well settled principles would lead to the selection of (143), and accordingly that will be adopted.
20.-GENERAL FORMS OF THE CONDITIONAL EQUATIONS.

If l is the length of a simple pendulum which makes one vibration per second of mean solar time, the observed force of gravity will be

$$
\begin{equation*}
g=\pi^{2} l \tag{146}
\end{equation*}
$$

Upon the assumption that the Earth attracts as if its entire mass were concentrated at its center of gravity, its attraction at a point upon its surface in latitude \boldsymbol{P} will be

$$
\begin{equation*}
l^{2} \mathrm{E}^{\prime} / a^{2} \rho^{2} \tag{147}
\end{equation*}
$$

The observed force of gravity is the Earth's attractive force diminished by the resolved value of its centrifugal force. Putting σ for the ratio of the centrifugal force to the force of gravity at the geographical latitude φ, we have*

$$
\sigma=\frac{4 \pi^{2} \mathrm{~N} \cos \phi}{g t_{1}{ }^{2}}=\frac{4 \mathrm{~N} \cos \varphi}{l t_{1}{ }^{2}}
$$

where $\mathrm{N} \cos \varphi$ is the radius of the Earth at latitude φ, and t_{1} is the number of mean solar seconds in a sidereal day. But \dagger

$$
\mathrm{N}=\frac{a}{\sqrt{ }\left(\mathrm{I}-e^{2} \sin ^{2} \varphi\right)}
$$

whence the centrifugal force at latitude φ is

$$
\sigma g=\frac{4 g a \cos \varphi}{l t_{1}^{2} \sqrt{ }\left(\mathrm{I}-e^{2} \sin ^{2} \varphi\right)}
$$

and the resolved part of that force acting in the direction of the vertical is

$$
\begin{equation*}
\sigma g \cos \varphi=\frac{4 g a \cos ^{2} \varphi}{l t_{1}^{2} \sqrt{ }\left(1-e^{2} \sin ^{2} \varphi\right)} \tag{148}
\end{equation*}
$$

Equating the Earth's attraction to the force of gravity augmented by the centrifugal force, we have

$$
\frac{l_{i}^{2} \mathrm{E}^{\prime}}{a^{2} \rho^{2}}=g(\mathrm{I}+\sigma \cos \varphi)
$$

Whence, by (146)

$$
\begin{equation*}
\frac{k^{2}}{\pi^{2}}=\frac{a^{2} \rho^{2} \eta}{E^{\prime}}(\mathrm{I}+\sigma \cos \varphi) \tag{149}
\end{equation*}
$$

If T is the length of the sidereal year, expressed in seconds of mean solar time, and a_{1} is that value of the semi-major axis of the Earth's orbit which would satisfy Kepler's third law, then

$$
\begin{equation*}
\mathrm{T}^{2}=\frac{4 \pi^{2} a_{1}{ }^{3}}{h^{2}\left(\mathrm{~S}+\mathrm{E}^{\prime}\right)} \tag{150}
\end{equation*}
$$

and by eliminating h^{2} / π^{2} between (149) and (150), and re-arranging the terms

$$
\begin{equation*}
\frac{\mathrm{S}+\mathrm{E}^{\prime}}{\mathrm{E}^{\prime}}=\frac{4 a_{1}^{3}}{l \mathrm{~T}^{2} a^{2} \rho^{2}(1+\sigma \cos \varphi)} \tag{15l}
\end{equation*}
$$

Owing to the splieroidal form of the Earth, those points which have $\sqrt{\frac{1}{3}}$ for the sine of their latitude are the only ones upon the Earth's surface at which a pendulum will vibrate as it would if the mass of the Earth were concentrated at its center of gravity. In order to justify the assumption made in equation (I47), we must therefore take $\sin ^{2} \varphi=\frac{1}{3}$, and consequently $\cos ^{2} \varphi=\frac{2}{3}$. We also put

$$
\begin{aligned}
& a=r \sin p \\
& a_{1}=r(\mathrm{I}+x)
\end{aligned}
$$

Substituting these values in (148) and (I51), they become

$$
\begin{gather*}
\frac{\mathrm{S}+\mathrm{E}^{\prime}}{\mathrm{E}^{\prime}}=\frac{4 a(\mathrm{I}+\pi)^{3}}{l \rho^{2} \mathrm{~T}^{2} \sin ^{3} p\left(1+\sigma \sqrt{ } \frac{2}{3}\right)} \tag{152}\\
\sigma \sqrt{ } \frac{2}{3}=\frac{8 a}{3 l t_{1}^{2} \sqrt{ }\left(\mathrm{I}-\frac{1}{3} \rho^{2}\right)} \tag{153}
\end{gather*}
$$

From (3), (5), (8), (14), and (17) we have

$$
\begin{array}{ll}
a=20926202 \text { feet } & l=3.256872 \text { feet } \\
e^{2}=0.00680348 \text { I org } & t_{1}^{2}=7424252068^{s} \\
\rho^{2}=0.99774^{2} 482 &
\end{array}
$$

Substituting these values in (152) and (153)

$$
\begin{align*}
\sigma \sqrt{2} & =0.00231046 \text { I } 5 \\
\frac{\mathrm{~S}+\mathrm{E}^{\prime}}{\mathrm{E}^{\prime}} & =[7.4099290] \frac{(\mathrm{I}+x)^{3}}{\mathrm{~T}^{2} \sin ^{3} p} \tag{154}
\end{align*}
$$

where the quantity in brackets is the logarithm of the number which it represents.
By attributing proper values to the symbols in equation (154) it may be applied either to the Earth revolving around the Sun or to the Moon revolving around the Earth. In the former case we shall have from (16) and (25)

$$
\begin{aligned}
\mathrm{T} & =3 \mathrm{I} 55^{8} 149.314^{\mathrm{g}} \\
(\mathrm{I}+x) & =0.999998710
\end{aligned}
$$

and the substitution of these values in (154) gives

$$
p=\left[\begin{array}{lll}
2 \cdot 784993 & 2 \tag{I55}
\end{array}\right]^{3} \sqrt{\left(\frac{\mathrm{E}^{\prime}}{\mathrm{S}+\mathrm{E}^{\prime}}\right)}
$$

where p is expressed in seconds of arc. Of the constants which enter this expression l is the most uncertain, and as it is not trustworthy beyond the fifth significant figure, the logarithmic coefficient in (155) is not trustworthy beyond the fifth decimal place.

The Earth's mass is very small compared with that of the Sun, and if in conformity with custom we take the latter for unity, we may write with ali needful accuracy

$$
\frac{\mathrm{E}^{\prime}}{\mathrm{S}+\mathrm{E}^{\prime}}=\mathrm{E}^{\prime}
$$

Further, in (I55) the symbol E^{\prime} refers to the mass of the Earth alone, while the quantity usually called the mass of the Earth is the combined mass of the Earth and Moon, denoted by the symbol E. Bearing in mind that the mass of the Moon is expressed in terms of the Earth's mass as unity, it is evident that

$$
E^{\prime}=\frac{E^{\prime}(I+M)}{I+M}=\frac{E}{I+M}
$$

and therefore when E^{\prime} is changed into E (I55) takes the form

$$
p=\left[\begin{array}{lll}
2 & 7 & 84993 \tag{156}
\end{array}\right]^{3} \sqrt{ }\left(\frac{\mathrm{E}}{\mathrm{I}+\mathrm{M}}\right)
$$

In order to apply (154) to the case of the Moon revolving around the Earth we must change the symbol S into $\mathrm{M},(\mathrm{I}+x)$ into $\left(\mathrm{I}+x^{\prime}\right), \mathrm{T}$ into T_{1}, and p into P Then, from (39) and (57)

$$
\begin{aligned}
\mathrm{T}_{1} & =236059 \mathrm{I}^{\cdot} 5^{\mathrm{s}} \\
\left(\mathrm{I}+u^{\prime}\right) & =1.000908743
\end{aligned}
$$

and by substituting these values we find, after a slight transformation

$$
\begin{equation*}
\frac{\mathrm{E}^{\prime}}{\mathrm{M}}=\frac{\sin ^{3} \mathrm{P}}{[4 \cdot 6650707-10]-\sin ^{3} \mathrm{P}} \tag{I57}
\end{equation*}
$$

where, as in (155), the logarithmic term is not trustworthy beyond the fifth place of decimals.

In 1755 D'Alembert determined the Moon's mass from the phenomena of precession and mutation, but to do this with extreme accuracy seems a difficult matter. The most recent attempt is by Mr. E. J. Stone,* who states that his equations include all terms of the third order in the lunar theory. With some changes of notation, and after restoring the factor $\cos \omega_{0}$, they are

$$
\begin{align*}
\varepsilon & =\mathrm{M} r^{3} / \mathrm{S} r_{1}{ }^{3} \\
\varepsilon & =(\mathrm{A} \varkappa+\mathrm{B} \varkappa \varepsilon) \cos \omega_{0} \tag{158}\\
d & =\mathrm{C} \varkappa \varepsilon \cos \omega_{0}
\end{align*}
$$

where π is a constant depending upon the Sun's mean disturbing force, the moments of inertia of the Eartl, and the Earth's angular velocity; and

$$
\begin{align*}
& \mathrm{A}=1+{ }_{2}^{3} e_{1}{ }^{2} \\
& \mathrm{~B}=1+{ }_{2}^{3} e_{2}{ }^{2}-6 y^{2} \tag{159}\\
& \mathrm{C}=\frac{2 y}{\mu}\left(1+\frac{3}{2} e_{2}{ }^{2}-\frac{5}{2} y^{2}\right)
\end{align*}
$$

As Mr. Stone has not published any details respecting these formula, it may be well to show how they can be derived. According to Serliet**

$$
\begin{align*}
& \mathrm{A}=\mathrm{I}+{ }_{2}^{3} e_{1}^{2} \\
& \mathrm{~B}=1+\frac{3}{2} c_{2}{ }^{2}-\frac{3}{2} \mathrm{I}^{2} \tag{160}\\
& \mathrm{C}=\frac{\mathrm{I}}{\mu}
\end{align*}
$$

but that geometer has neglected terms of the third order with respect to the inclina-

- tion and eccentricity of the Moon's orbit, and to restore them we must replace I by $\left(1+\frac{3}{2} e_{2}^{2}\right) \sin I \cos I$. Bearing in mind that $\sin {\underset{2}{2}} I=\gamma$, we have

$$
\begin{aligned}
\sin I \cos I & =\sin 2\left(\frac{1}{2} I\right) \cos 2\left(\frac{1}{2} I\right) \\
& =2 \gamma^{\prime}\left(1-\gamma^{2}\right)^{\frac{1}{2}}\left(1-2 \gamma^{2}\right) \\
& =\left(2 \gamma-4 \gamma^{3}\right)\left(1-y^{2}\right)^{\frac{1}{2}}=2 \gamma-5 y^{3}-\text { etc. }
\end{aligned}
$$

and therefore to take account of all terms of the third order in the equations (i60), it suffices to replace I by

$$
\begin{equation*}
\left(1+\frac{3}{2} e_{2}^{2}\right)\left(2 \gamma-5 \gamma^{3}\right)=2 \gamma+3 e_{2}^{2} \gamma-5 \gamma^{3} \tag{161}
\end{equation*}
$$

and I^{2} by $4 \gamma^{2}$. Upon making the substitution the equations (I59) result.
Reverting to the equations (158), eliminating u and ε from them, and introducing the sines of the parallaxes instead of the mean distances, we get

$$
\begin{equation*}
M=\frac{A i S \sin ^{3} p}{\left(C y^{2}-B i d\right) \sin ^{3} P} \tag{162}
\end{equation*}
$$

But from (154)

$$
\mathrm{S} \sin ^{3} p=\mathrm{E}^{\prime}\left([2.4117042-10]-\sin ^{3} p\right)
$$

which being substituted in (162) gives

$$
\begin{equation*}
\frac{\mathrm{E}^{\prime}}{\mathrm{M}}=\frac{(\mathrm{C} \dot{\mathrm{C}}-\mathrm{B} \dot{1}) \sin ^{3} \mathrm{P}}{\mathrm{~A} \boldsymbol{d}\left([2.4117042-10]-\sin ^{3} p\right)} \tag{163}
\end{equation*}
$$

60
From (24), (6I), (64), and (52)

$$
\begin{array}{ll}
e_{1}=0016771049 & y=0.044886793 \\
e_{2}=0.054899720 & \mu=0.337815984
\end{array}
$$

and with these values, from (159)

$$
\begin{align*}
& \mathrm{A}=+\mathrm{r} .00042 \mathrm{I} 902 \\
& \mathrm{~B}=+0.992432024 \tag{I64}\\
& \mathrm{C}=+0.265609855
\end{align*}
$$

In ($1 \sigma_{3}$) the term $\sin ^{3} p$ is so small that we may safely use the value found by assuming $p=8.834^{\prime \prime}$, and by substituting that, together with the values of A, B, and C from (I64), we shall have

$$
\begin{equation*}
\frac{\mathrm{E}^{\prime}}{\mathrm{M}}=\sin ^{3} \mathrm{P}\left\{10288642 \frac{2}{d}-38442769\right\} \tag{165}
\end{equation*}
$$

To find the relations existing between \mathfrak{d}, and P , we equate the right hand members of (157) and (165), and thus obtain

$$
\begin{equation*}
\left.w=\frac{1-21623665 \sin ^{3} \mathrm{P}}{3.7574449-80795^{2} \cdot 64 \sin ^{3} \mathrm{P}}\right\} \tag{166}
\end{equation*}
$$

The parallactic inequality of the Moon is given by the expression*

$$
\begin{equation*}
\sin \mathrm{Q}^{\prime}=\mathrm{F} \frac{\mathrm{E}^{\prime}-\mathrm{M}}{\mathrm{E}^{\prime}+\mathrm{M}} \times \frac{a_{2}}{a_{1}} \sin \mathrm{D} \tag{167}
\end{equation*}
$$

where D is the mean angular distance of the Moon from the Sun; and when $\sin \mathrm{D}$ becomes unity, Q^{\prime} becomes Q. But

$$
a_{2}=\frac{a\left(\mathrm{I}+x^{\prime}\right)}{\sin \mathrm{P}} \quad a_{1}=\frac{a(\mathrm{I}+\pi)}{\sin p}
$$

Whence, with the numerical values of $\left(1+x^{\prime}\right)$ and $(1+x)$ from (57) and (25)

$$
\begin{equation*}
\frac{a_{2}}{a_{1}}=\frac{\left(1+x^{\prime}\right) \sin p}{(\mathrm{I}+\pi) \sin \mathrm{P}}=\mathrm{I} 000910034 \frac{\sin p}{\sin \mathrm{P}} \tag{168}
\end{equation*}
$$

Delaunay gives \dagger

$$
\begin{equation*}
\frac{\mathrm{F}}{\operatorname{arc~} \mathrm{I}^{\prime \prime}} \times \frac{a_{2}}{a_{1}}=127^{\prime 2} 243^{\prime \prime} \tag{169}
\end{equation*}
$$

But instead of using the rigorous formula (i68), he armaged his numerical computations so as to employ the expression

$$
\begin{equation*}
\frac{a_{2}}{a_{1}}=\frac{\mu\left(\mathrm{I}+x^{\prime}\right)}{\mathrm{I}} \tag{170}
\end{equation*}
$$

from which, with

$$
p=8.75^{\prime \prime} \quad \mathrm{P}=3422^{\prime \prime} 7^{\prime \prime} \quad \mathrm{I}+x^{\prime}=\mathrm{r} .000908743
$$

he obtained

$$
a_{2} / a_{1}=0.00255^{8} 784
$$

Substituting that value in (169), we find

$$
\begin{equation*}
F=0.241086 \tag{171}
\end{equation*}
$$

From the data given by Professor Newcoms,* it appears that the value of F implicitly contained in Havsex's lunar tables is

$$
\begin{equation*}
\mathrm{F}=122.032^{\prime \prime} \operatorname{arc} \mathrm{I}^{\prime \prime} \frac{\mathrm{E}^{\prime}+\mathrm{M}}{\mathrm{E}^{\prime}-\mathrm{M}} \times \frac{a_{1}}{a_{2}} \tag{172}
\end{equation*}
$$

but it is not quite clear whether a_{1} / a_{2} should be derived from (168) or (170). If the former, as according to Newcomb, Hansen used

$$
p=8.6085^{\prime \prime} \quad \mathrm{P}=3422.25^{\prime \prime} \quad \mathrm{M}=\frac{1}{8 \mathrm{O}}
$$

(172) gives

$$
\mathrm{F}=0.240922
$$

If the latter

$$
\begin{equation*}
\mathrm{F}=0.240933 \tag{173}
\end{equation*}
$$

The mean of (I / r) and ($\mathrm{r} / 3$) will be adopted, namely

$$
\begin{equation*}
\mathrm{F}=0.241010 \tag{174}
\end{equation*}
$$

Reverting to $\left(1 \sigma_{7}\right)$, making \sin D) unity, substituting the value of a_{2} / a_{1} from (168), that of from (174), and re-arranging the terms, we obtain

$$
\begin{equation*}
p=[5.3031248-\mathrm{Io}] \mathrm{PQ} \frac{\mathrm{E}^{\prime}+\mathrm{M}}{\mathrm{E}^{\prime}-\mathrm{M}} \tag{175}
\end{equation*}
$$

$$
{ }^{*} 62, \overline{p p} .69,79, \text { and } 87 .
$$

where the quantity within the brackets is the logarithm of the number which it represents, and on account of the uncertainty in F it is not trustworthy beyond the fifth place of decimals.

The lunar equation of the Earth's motion is*

$$
\begin{equation*}
\delta v=-\frac{\mathrm{M}}{\mathrm{E}^{\prime}+\mathrm{M}} \times \frac{\sin p^{\prime}}{\sin \mathrm{P}^{\prime}} \times \cos s^{\prime} \sin \left(v^{\prime}-v\right) \tag{I76}
\end{equation*}
$$

in which p^{\prime} and P^{\prime} are the actual values of the solar and lunar parallaxes at the instant for which δv is required. For any given lunation, δv will evidently attain its maximum value when $\sin \left(v^{\prime}-v\right)=1$, that is, when the longitudes of the Sun and Moon differ by ninety degrees. If now we have an extensive series of observed values of $\delta \nu$, covering many complete revolutions of the Moon's node, δv will have assumed all possible values, the mean of which will be the constant of the lunar inequality; p^{\prime} will have assumed all possible values, the mean of which will be the constant of solar parallax; and the Moon will have had all possible latitudes, the mean of which will be zero. With P^{\prime} the case is somewhat different. It is equal to the constant of lunar parallax, plus a series of terms multiplied by factors made up of the mean anomaly of the Sun, the mean anomaly of the Moon, the mean distance of the Moon from its ascending node, and the difference of the mean longitudes of the Sun and Moon. All these terms, except those involving the difference of the mean longitudes, will assume all possible values and vanish from the mean. The mean of all the values of P^{\prime} will therefore be, $\mathrm{P}+$ terms depending upon the difference of mean longitudest of the Sun and Moon. Turning now to the lunar theory, we find but a single term of this kind, \ddagger and its value is $28.1788^{\prime \prime} \cos 2 \mathrm{D}$. As we have supposed all our observations of δv to be made when D was 90°, the value of this term will be $-28^{\circ} 18^{\prime \prime}$, and the mean value of P^{\prime} will be $\mathrm{P}-28^{\circ} 18^{\prime \prime}$. However, it will be better to write

$$
\begin{equation*}
P^{\prime}=P(1+G) \tag{177}
\end{equation*}
$$

and then, according to Delauray, we shall have \ddagger

$$
P G=-28.1788^{\prime \prime}
$$

which, with $\mathrm{P}=3422^{\prime} 7^{\prime \prime}$, gives

$$
\begin{equation*}
G=-0.00823292 \tag{I78}
\end{equation*}
$$

To find the value of G employed in Harsen's tables of the Moon we have, according to Newcomb §

$$
\mathrm{PG}=-28.225^{\prime \prime}
$$

which, with $\mathrm{P}=3422^{\circ} 25^{\prime \prime}$, gives

$$
\begin{equation*}
G=-0.00824750 \tag{179}
\end{equation*}
$$

[^11]The substitution of the mean of (178) and (179) in (177) gives

$$
\mathrm{P}^{\prime}=0^{\circ} 99^{1} 7598 \mathrm{I}^{\prime}
$$

Substituting the mean values thus found in (i76), and re-arranging the terms, we obtain

$$
\begin{equation*}
p=[4.6819624-\mathrm{Io}] \mathrm{PL} \frac{\mathrm{E}^{\prime}+\mathrm{M}}{\mathrm{M}} \tag{i80}
\end{equation*}
$$

where the logarithm of the numerical coefficient is trustworthy only to five places of decimals.

If V is the velocity of light, θ the light equation, or, in other words, the time required by light to traverse the mean radius of the Earth's orbit, and u the equatorial semidiameter of the Earth, then

$$
\begin{equation*}
\sin p=\frac{a}{V \theta} \tag{181}
\end{equation*}
$$

whence, with the value of a from (3)

$$
\begin{equation*}
p=\frac{[8.91248 \mathrm{I} 6]}{\mathrm{V} \theta} \tag{182}
\end{equation*}
$$

The mean velocity of the Earth in its orbit is*

$$
\frac{2 \pi r}{\mathrm{~T} \sqrt{ }\left(\mathrm{I}-e_{1}^{2}\right)}
$$

and if we assume the constant of aberration to be the ratio of that velocity to the velocity of light, then

$$
\tan \alpha=\frac{2 \pi r}{\operatorname{VI} \sqrt{ }\left(\mathrm{I}-e_{1}^{2}\right)}
$$

But $r=a / \sin p$, whence

$$
\begin{equation*}
p=\frac{2 \pi a}{\mathrm{TV} \alpha \operatorname{arc}^{2} \mathrm{I}^{\prime \prime} \sqrt{ }\left(\mathrm{I}-c_{1}^{2}\right)} \tag{183}
\end{equation*}
$$

Substituting the values of $a, \mathrm{~T}$, and e_{1} from (3), (16), and (24)

$$
\begin{equation*}
p=\frac{[7.5260362]}{\mathrm{V} \alpha} \tag{184}
\end{equation*}
$$

$$
*_{2} \text {, vol. } 1, \text { p. } 637 .
$$

21.-THE LEAST SQUARE ADJUSTMENT.

The conditions which must be satisfied by the adjusted quantities are embodied in equations (156), (157) : (166) , (175), (I80), (182), and (I84). For convenience of reference they are collected in the group (185), where the quantities within brackets are the logarithms of the numbers which they represent, and although given to six places of decimals they are trustroorthy only to five.

$$
\begin{align*}
\frac{1}{\mathrm{M}} & =\frac{\sin ^{3} \mathrm{P}}{[4.66507070-10]-\sin ^{3} \mathrm{P}} \\
\text { o or } v_{1} & =p-[2.784993]\left(\frac{\mathrm{E}}{\mathrm{I}+\mathrm{M}}\right)^{\frac{1}{3}} \\
\text { o or } v_{2} & =p-[5.303125-\mathrm{IO}] \mathrm{PQ} \frac{\mathrm{I}+\mathrm{M}}{\mathrm{I}-\mathrm{M}} \\
\text { o or } v_{3} & =p-[4.68 \mathrm{I} 962-\mathrm{IO}] \mathrm{PL} \frac{\mathrm{I}+\mathrm{MI}}{\mathrm{M}} \tag{185}\\
\text { o or } v_{4} & =p-\frac{[8.912482]}{\mathrm{V} \theta} \\
\text { o or } v_{5} & =p-\frac{[7.526036]}{\mathrm{V} \alpha} \\
\text { o or } v_{6} & =d-\frac{1}{\varepsilon}\left\{\frac{\mathrm{I}-216236.65 \sin ^{3} \mathrm{P}}{3.7574449-807952.64 \sin ^{3} \mathrm{P}}\right\}
\end{align*}
$$

If the observed quantities were rigorously exact, their substitution in the conditional equations (185) would reduce all the right hand members of the latter to zero; but in general this will not happen, and instead we shall obtain a series of residuals which may be designated v_{1}, v_{2}, v_{3}, etc., as indicated in (i85). To make these residuals disappear, a series of corrections to the observed quantities must be determined, such that

$$
p=p^{\prime}+d p \quad \mathrm{P}=\mathrm{P}^{\prime}+d \mathrm{P} \quad \quad,=\mathfrak{z}^{\prime}+d \mathrm{c}^{\prime} \mathrm{e} \quad \mathrm{e}^{2} \mathrm{c} ., \text { etc. }
$$

where the observed quantities are distinguished by an accent, and the differentials are the required corrections. The first step will be to differentiate the equations (185), thus:

$$
\begin{align*}
& d \mathrm{M}=-3 \cot \mathrm{P} \text { arc } \mathrm{I}^{\prime \prime}(\mathrm{I}+\mathrm{M}) d \mathrm{P} \\
& 0=d p+\frac{p}{3(\mathrm{I}+\mathrm{M})} d \mathrm{M}-\frac{[8.35498]}{3 p^{2}(\mathrm{I}+\mathrm{M})} d \mathrm{E} \\
& 0=d p-\frac{p+[5.303 \mathrm{I2}] \mathrm{PQ}}{\mathrm{I}-\mathrm{M}} d \mathrm{M}-\left[5^{\circ} 303 \mathrm{I} 2\right] \frac{\mathrm{I}+\mathrm{M}}{\mathrm{I}-\mathrm{M}}(\mathrm{P} . d \mathrm{Q}+\mathrm{Q} \cdot d \mathrm{P}) \\
& \mathrm{o}=d p+\frac{p-[4.68 \mathrm{I} 96] \mathrm{PL}}{\mathrm{M}} d \mathrm{M}-[4.68 \mathrm{I} 96] \frac{\mathrm{I}+\mathrm{M}}{\mathrm{M}}(\mathrm{P} . d \mathrm{~L}+\mathrm{L} . d \mathrm{P}) \\
& \mathrm{o}=d p+\frac{r}{\mathrm{~V}} d \mathrm{~V}+\frac{p}{\theta} d \theta \tag{186}\\
& 0=d p+\frac{p}{\mathrm{~V}} d \mathrm{~V}+\frac{p}{\alpha} d \alpha \\
& \mathrm{o}=d \mathrm{~d}-\frac{2}{2} d \mathrm{~d} \\
& +3 \operatorname{arc} \mathrm{I}^{\prime \prime}\left([5.33493] 2 \mathrm{Z}-\left[5^{\circ} 90739\right] \frac{\sin ^{2} \mathrm{P} \cos \mathrm{P} \cdot d \mathrm{P}}{[0.57489]-\left[5^{\circ} 90739 \sin ^{3} \mathrm{P}\right]}\right.
\end{align*}
$$

Upon reducing the coefficients in (186) to numbers by means of the data in (195), eliminating $d \mathrm{M}$, which is not an observed quantity, and adding v_{1}, v_{2}, v_{3}, etc., to the resulting expressions, we obtain

$$
\begin{align*}
& \mathrm{o}=v_{1}+(d)-[7.41 \text { 17 } 7-10] d \mathrm{P}-[5.9802] d \mathrm{E} \\
& \left.\mathrm{O}=v_{2}+d_{l}\right)+[8.1170-10] d \mathrm{P}-[8.8478-10] d \mathrm{Q} \\
& 0=v_{3}+\left(l_{p}\right)-[9.8134-10] d \mathrm{P}-[0.1445] d \mathrm{~L} \\
& 0=v_{4}+(1)+[5.6758-10] d \mathrm{~V}+[8.2498-10] d 0 \tag{187}\\
& 0=v_{5}+(p)+[56758-10] d \mathrm{~V}+[9.635 \mathrm{I}-\mathrm{IO}] d \alpha \\
& 0=v_{6}+d l_{1}^{2}-\left[9^{\circ} 2633-10\right] d \vec{e}+[9.3243-10] d \mathrm{P}
\end{align*}
$$

From (185) and (195) the reciprocal of M was found to be 83.748 , and accordingly that value was used in forming the differential equations (i87). The firal solution of these equations gives $1 / M=8 I^{\circ} 197$, but an inspection of the equations (i86) shows that the difference between these two values can not sensibly affect any of the equations (187) except the third, in which it would have been better to have used $1 / M=\frac{1}{2}\left(8_{3} \cdot 748+\delta_{1} \cdot 197\right)=\delta_{2} \cdot 472$.

The equations (187) contain as unknown quantities ten corrections, which must be so determined as to satisfy these equations rigorously, and at the same time make the sum of the weighted syuares of the corrections a minimum. 'To accomplish that we may use either the method of correlatives, or the method of double elimination, sometimes called the method of independent unknowns. As the probable errors of all the corrections are required, and the equations lend themselves readily to a double elimination, that method has been adopted. The equations (187) have been used to eliminate six of the unknowns, and in (189) each of the ten is expressed in terms of the remaining four, namely, in terms of $d p, d \vec{d}, d d y$ coefficients there given being the logarithms of the numbers which they represent. The weights have been computed from the probable errors in (195) by means of the formula

$$
\begin{equation*}
\text { Log. weight }=-4-2 \text { (log. probable error.) } \tag{188}
\end{equation*}
$$

Equations No. (189).

	$d p$	d)	$d \hat{1}$	$d \alpha$	n	Log. weight.
$d p=$	+0.0000	-	-	0.1310
$d \mathrm{P}=$		+9.9390-10	-0.6757		- [0.6757] x_{6}	$7 \cdot S_{344}$ - 10
$d{ }^{3}=$		+0.0000		. . . -	1.2110
d? $=$			+0.0000	. . .		9.9016 - 10
$d \mathrm{Q}=$	$+1.1522$	$+9.2082-10$	-9.9449-10		$+[1.1522] r: \quad-[9.9449-10] r_{6}$	$6.9118-10$
$d \mathrm{~L}=$	+ 9. $5555-10$	-9.6079-10	+0.3446		$+[9 \cdot 8555-10] v_{3}+[0 \cdot 3446] v_{6}$	9.5918 - 10
$d a=$				+0.0000		$9.9172-10$
$d^{d} \theta=$				+1.3553	$-[1.7502]\left(v_{4}-v_{0}\right)$	$5.9828-10$
$d \mathrm{~V}=$	-4.3242			- $3 \cdot 9593$	$-[4 \cdot 3242] i_{5}$	$2.8874-10$
$d \mathrm{E}=$	$+4.0198-10$	-1.3705-10	$+2 \cdot 1072-10$		$+[4.0198-10] r_{1}+[2 \cdot 10 ; 2-10] r_{6}$	$11.58 S 5$

Imagining the symbols $d p, d \mathrm{P}, d \boldsymbol{d}$, etc., in the first column of the equations (189) to be replaced by zeros, the weighted normal equations (190) have been formed in the usual way, but for lack of space on the page their absolute terms are represented by the letters $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, whose values are given in (191).

$$
\begin{align*}
& 0=+\mathrm{A}+36.482 \quad d p-0.11263 d .9+061429 d \mathrm{~d}+14.822 d \alpha \\
& 0=+\mathrm{B}-0.11263 d p+16.324 \quad d \geq-0.37844 d \boldsymbol{d} \quad 0.00000 \mathrm{~d} \alpha \tag{190}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{A}=+0.42501 \quad v_{1}+0.1645 \mathrm{I} \quad v_{2}+0.20082 v_{3}+34340 \quad v_{5}+0.61429 v_{6} \\
& \mathrm{~B}=-0.00095302 v_{1}+0.0018715 v_{2}-0.11355 v_{3}-0.37844 v_{6} \tag{191}\\
& \mathrm{C}=+0.0051976 v_{1}-0.010207 v_{2}+0.61930 v_{3}+2.0640 v_{6} \\
& \mathrm{D}=-0.13131 \quad v_{4}+14953 \quad v_{5}
\end{align*}
$$

The general solution of (190) is

$$
\begin{align*}
& d p=-0.16 \mathrm{I} 962 \mathrm{~A}-0.000312 \mathrm{~B}+0.034731 \mathrm{C}+0.329735 \mathrm{D} \\
& d \underset{c}{d}=-0.000312 \mathrm{~A}-0.061449 \mathrm{~B}-0.00806 \mathrm{I}+0.000636 \mathrm{D} \tag{192}\\
& d=+0.03473 \mathrm{~A}-0.00806 \mathrm{IB}-0.358027 \mathrm{C}-0.070709 \mathrm{D} \\
& d \alpha=+0.329735 \mathrm{~A}+0.000636 \mathrm{~B}-0.070709 \mathrm{C}-0.808655 \mathrm{D}
\end{align*}
$$

By first substituting in (192) the values of $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D from (191), and then substituting in (i89) the resulting values of $d p$, $d \stackrel{\text { d }}{=} d$, and $d \alpha$, we obtain the formulæ (193), which are the expressions for the desired corrections to the observed values of $p, \mathrm{P},{ }_{2}$, etc., in terms of v_{1}, v_{2}, v_{3}, etc. The coefficients in (193) are the logarithms of the numbers which they represent.

Formule TVo. (193).

	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}
$d p=$	-8.8367-10	-8.4313-10	-8.0406 - 10	-8.6365-10	-9.8002-10	-8.4423-10
$d \mathrm{P}$	-8.7873-10	- 8.6474-10	+0.0065	-8.6442-10	-9.8079-10	-0.1294
$d \stackrel{\text { d }}{\text { d }}=$	$-6.0641-10$	-5.9245-10	$+7.2840-10$	-5.9217-10	- $7.0806-10$	$+7.8079-10$
d ${ }^{\text {a }}$ =	$+8.1109-10$	+ $7.9710-10$	-9.3301-10	+ 7.9678-10	$+9.1315-10$	-9.8540-10
$d \mathrm{Q}=$	-9.9939-10	+11400	+ $8.5155-10$	-9.7944-10	-0.9581	-9.8085-10
${ }^{d} \mathrm{~L}=$	-8.3146-10	+71326-10	+9.3720-- 10	-8.0203 - 10	-9.1842-10	+9.7844-10
$d a=$	+9.1454-10	+8.7401-10	+8.3494-10	$+9.0260-10$	-9.8858-10	$+8.7510-10$
$d \theta=$	+0.5307	+0.1254	+9.7347-10	- 1.7298	+1.5751	+0.1363
$d \mathrm{~V}=$	+ 2.2446	+1.8393	+1.4488	- 1.7278	- 2.S919	+1.8506
$d \mathrm{E}=$	+ $3.9890-10$	- $2.4493-10$	-2.1533-10	-2.6551-10	-3.8188-10	-2.4038-10

For computing the probable errors of the adjusted values of p, P, etc., we shall need a series of formula expressing each of these adjusted values in terms of the originally observed values. As a first step toward finding them we substitute in (193) the values of v_{1}, v_{2}, v_{3}, etc., from (187), and thus obtain the equations (194).

Equations No. (194).

$\begin{aligned} & \text { in } \\ & \stackrel{0}{0} \\ & \text { تِ } \\ & \hline \end{aligned}$	Logarithmic coefficients for computing-				
	$d p$	$d \mathrm{P}$	d ${ }^{\text {d }}$	d	$d Q$
$d \mathrm{f}$	$+9.5928-10$	$-9.34 \mathrm{So}-10$	$-6.6395-10$	+ S.6715-10	-0.4980
$d \mathrm{P}$	-7.0515-10	+99755-10	$-6.0154-10$	+8.0611-10	-8.4178-10
d ${ }^{\text {d }}$	-7.7056-10	-9.3927-10	$+7.0712-10$	-9.1173--10	$-9.0718-10$
$d \leq 1$	+ S. $4+23-10$	+0.1294	-7.S079-10	$+9.5540-10$	$+9 \cdot \mathrm{SoS}_{5}-10$
$d \mathrm{Q}$	-7.2791-10	$7 \cdot 4952-10$	-4.7723-10	$+6.8 \mathrm{ISS}-10$	$+9.9875-10$
$d \mathrm{~L}$	- $8 \cdot 1 \mathrm{~S}_{5} 1-10$	+0.1510	+ 742S5-10	-9.4746-10	+ 8.6600-10
$d a$	+94353-10	$+94436-10$	+6.7163-10	-S.7672-10	+0.5938
$d \theta$	$+6.5863-10$	+ $6.89+0-10$	$+4.1715-10$	-6.2176-10	+ 8.0442-10
$d \mathrm{~V}$	$+5.5051-10$	+ 5.5125-10	+ 2.7855-10	$-4 . S_{361}-10$	+6.6627-10
$d \mathrm{E}$	- 4.SI69	$-4 * 7675$	-2.0443	+4.0911	-5.9741
Logarithmic coefficients for computing-					
تِ	$d \mathrm{~L}$	d_{a}	$d \theta$	$d \mathrm{~V}$	$a^{3} \mathrm{E}$
d_{s}	-8.7237-10	$+9 \cdot 6488-10$	+1.0341	+2.7484	$-3.3587-10$
$d \mathrm{P}$	+S.3940-10	$+7.3612-10$	+S.7462-10	+0.4592	-1.0131-10
$d{ }^{2}$	+9.0477-10	+S.0143-10	+ $9.3996-10$	+1.1139	- 1.6671 - 10
d	$-9.7 S_{44}-10$	-S.7510-10	-0.1363	- I \cdot S506	$+2.403 S-10$
$d \mathrm{Q}$	$+5.9 \mathrm{SO} 4-10$	+ 7.5879-10	+S.9732-10	+ 0.6871	-1.2971-10
$d^{2} \mathrm{~L}$	+9.5165-10	+ $5.4939-10$	+9.S792-10	+1.5933	-2.2978-10
$d a$	+ S.SI99-10	+9.5215-10	- 1.2108	$+2.5276$	+ $3.4545-10$
$d \theta$	$+6.2701-10$	-7.275 - 10	+ 9.9796-10	+ 9.9776-10	+ 0.9049-10
$d \mathrm{~V}$	+4 SSSS - 10	+5.4971-10	+ 6. $5822-10$	+S.5965-10	+9.5234-20
$d^{\prime} \mathrm{E}$	-4.2948	$+5 \cdot 1256$	$+6.5109$	$+8.224 \mathrm{~S}$	$+9.9692-10$

$$
d \mathrm{M}=+[0.94804-10] d \mathrm{P}
$$

The tabular form has been adopted to save space. It is to be read thus

$$
\begin{aligned}
d p= & +[9.8928-10] d p-[7.0515-10] d \mathrm{P}-[7.7056-10] d \mathrm{e}+[8.4423-10] d \lambda \\
& -[7.2791-10] d \mathrm{Q}-[8.185 \mathrm{I}-10] d \mathrm{~L}+[9.353-10] d \alpha+[6.8863-10] d \theta \\
& +[5.505 \mathrm{I}-10] d \mathrm{~V}-[4.8169] d \mathrm{E}
\end{aligned}
$$

and similarly for the other quantities. The further consideration of these equations is relegated to page 71.

22.-NUMERICAL VALUES OF THE CORRECTIONS BY ADJUSTMENT.

The adopted values of the observed quantities arrived at in the preceding pages are marked numbers (66), (67), (75), (89), (90), (91), (92), (101), (132), and (143). For convenience of reference they are all collected in the group (195), where those which vary with the time are reduced to the epoch $1850^{\circ} 0$.

$$
\begin{align*}
& p=8.834^{\prime \prime} \pm 0.0086^{\prime \prime} \\
& \mathrm{P}=34^{2} 3^{\circ} \cdot 8^{\prime \prime} \quad \pm 0.121^{\prime \prime} \\
& \dot{Z}=50.3586^{\prime \prime} \pm 0.00248^{\prime \prime} \\
& \text { 发 = } 9^{\circ 2331^{\prime \prime} \pm 0.0112^{\prime \prime}} \\
& \mathrm{Q}=125^{\circ} 46^{\prime \prime} \pm 0.35^{\prime \prime} \\
& \mathrm{L}=6.514^{\prime \prime} \pm 0.016^{\prime \prime} \tag{195}\\
& \alpha=20.466^{\prime \prime} \pm 0.01 I^{\prime \prime} \\
& \theta=4970^{\circ} \quad \pm \text { I }^{\circ} 2^{9} \\
& \mathrm{~V}=186347 \pm 36 \text { miles } \\
& \mathrm{E}=0.000003005097 \pm 0.000000016056
\end{align*}
$$

By substituting these values of the observed quantities in the equations (185), we obtain the following results :

\[

\]

Whence, by (193)

$$
\begin{equation*}
d \mathrm{E}=+0.0000000 .52007 \quad \mathrm{E}+d \mathrm{E}=0.000003057104 \tag{197}
\end{equation*}
$$

The value of E given in (195) was obtained from the normal equations (130), and as they must be satisfied with respect to v and v^{i}, the value of v^{ii} deducible from the corrected E of (197) must now be introduced in them, and they must be re-solved. Thus new values will be found for the masses of Mercury and Venus, which in their turn will affect the planetary precession, and through it the entire system of corrections by adjustment. To take account of these changes, some subsidiary formulæ are needed, which will now be investigated.

Reverting to the normal equations (I30), if $\nu^{i i}$ is regarded as known their general solution will be

$$
\begin{align*}
& 100 v=-3.561599433 \mathrm{~A}-0.000266658 \mathrm{~B} \tag{I98}\\
& 100 v^{i}=-0.000216658 \mathrm{~A}-0.013762852 \mathrm{~B}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{A}=+19.8172^{\prime \prime}-21.3120^{\prime \prime} v^{\mathrm{ii}} \\
& \mathrm{~B}=-227.7718^{\prime \prime}+4178.6252^{\prime \prime} v^{\mathrm{ii}}
\end{aligned}
$$

We therefore have

$$
\begin{align*}
& v=-0.705315797+0.749994745 \nu^{\mathrm{ii}} \tag{199}\\
& v^{\mathrm{i}}=+0.031304960-0.575051828 v^{i \mathrm{i}}
\end{align*}
$$

But

$$
\begin{equation*}
\mathrm{E}+d \mathrm{E}=\mathrm{E}\left(\mathrm{I}+\nu^{\mathrm{ii}}\right) \quad \nu^{\mathrm{ii}}=d \mathrm{E} / \mathrm{E} \tag{200}
\end{equation*}
$$

and from Table III, $\mathrm{E}=0.000002$ 817409; whence, by substitution in (199)

$$
\begin{align*}
& v=-0.70531580+266200 d \mathrm{E} \tag{201}\\
& v^{\mathrm{i}}=+0.03 \mathrm{I} 30496-204107 d \mathrm{E}
\end{align*}
$$

As these equations are of the form

$$
v=a+b \cdot d \mathrm{E}
$$

the equations for correcting the masses of Mercury and Venus will be of the form

$$
\begin{equation*}
m+d m=m(1+a+b . d \mathrm{E})=m(\mathrm{I}+a)+m b . d \mathrm{E} \tag{202}
\end{equation*}
$$

where m is the provisional mass of the planet. With

$$
m=0.000000333333 \quad m^{i}=0.000002488509
$$

from Table III, and the vahues of $m(1+a)$ from (I32), a comparison of (201) and (202) gives

$$
\begin{align*}
& \text { Mass of Mercury }=0.000000 \text { 1 14 } 882+0.088733 d \mathrm{E} \\
& \text { Mass of Venus }=0.000002471082-0.507922 d \mathrm{E} \tag{203}
\end{align*}
$$

Finally, if instead of the values of v and v^{i} formerly used, those from (201) are substituted in (76), we shall obtain

$$
\begin{equation*}
{ }_{2}^{2}=50^{\circ} 3586^{\prime \prime}-31716^{\prime \prime} d \mathbf{E} \tag{204}
\end{equation*}
$$

With the value of $d \mathrm{E}$ from (197), equation (204) gives

$$
\begin{equation*}
y=50.3586^{\prime \prime}-0.0016^{\prime \prime}=50.3570^{\prime \prime} \tag{205}
\end{equation*}
$$

which must be used instead of the value given in (195). With it we find

$$
\begin{equation*}
v_{6}=+0.10666^{\prime \prime} \tag{206}
\end{equation*}
$$

A repetition of the computation of $d \mathrm{E}$ then gives

$$
d \mathrm{E}=+0.000000052000
$$

and no further change occurs in 2
With the residuals from (196) and (206) the formulæ (193) give

$$
\begin{array}{ll}
d p=-0.024278^{\prime \prime} & d \mathrm{~L}=-0.000644^{\prime \prime} \\
d \mathrm{P}=-0.42353^{\prime \prime} & d \alpha=-0.012018^{\prime \prime} \\
d \mathrm{E}=+0.000155^{\prime \prime} & d \theta=+0.9897^{3} \tag{207}\\
d \mathrm{~d}=-0.017253^{\prime \prime} & d \mathrm{~V}=-10.855 \text { miles } \\
d \mathrm{Q}=-0.49887^{\prime \prime} & d \mathrm{E}=+0.000000052000
\end{array}
$$

The addition of these corrections to the observed values in (195) and (205), and the substitution of the corrected values in the equations (185), lead to a more exact mass of the Moon and a second series of much diminished residuals, namely

\[

\]

To reduce these residuals still further they were substituted in the formulæ (193), and gave the additional corrections

$$
\begin{array}{rlrl}
d p & =+0.000043^{\prime \prime} & d \mathrm{~L} & =-0.000330^{\prime \prime} \\
d \mathrm{P} & =-0.000038^{\prime \prime} & d \alpha & =-0.000134^{\prime \prime} \\
d \mathrm{~d} & =-0.000003^{\prime \prime} & d \theta=+0.001238^{\mathrm{s}} \tag{208}\\
d \mathrm{~d} & =+0.000360^{\prime \prime} & d \mathrm{~V}=-0.1538 \mathrm{miles} \\
d \mathrm{Q} & =+0.000920^{\prime \prime} & d \mathrm{E}=-0.000000000560
\end{array}
$$

When the sums of the respective corrections in (207) and (208) were added to the observed values in (195) and (205), the corrected values so found sufficiently satisfied the equations (185), the largest residual being $0.00002^{\prime \prime}$, which corresponds to an error of one unit in the sixth decinal place of the logarithms, while the constant logarithms which enter the equations are not trustworthy beyond the fifth decimal place.

It may be well to note that \log. M and \log. it can not be found accurately to six places of decimals unless P is known to $0.0001^{\prime \prime}$, and certain of the logarithms to at least eight places of decimals. To find log. sin P with the requisite accuracy we have

$$
\log \cdot \sin \left(3422^{\prime \prime}+x\right)=8.2198349494+0.0001269008 x-0.0000000185 x^{2}
$$

where x is expressed in seconds of arc. The other logarithms necessary to at least eight places are

$$
\begin{aligned}
& \log .216236 .648=5.334929300 \\
& \log \cdot 3.75744492=0.574892623 \\
& \log .807952 .643=5.907385906
\end{aligned}
$$

It is now possible to improve our values of the probable errors of the observed quantities (195), and for that purpose we remark that the expressions (189) are in reality a series of ten observation equations, which determine the four unknowns p, d, did and α from the above-mentioned observed quantities. The corrections by adjustment, $d p, d P, d y$, etc., are the residuals of these equations, and the probable error corresponding to weight unity can be computed from them by means of the well-known expression

$$
0.67449 \sqrt{\left(\frac{[p v v]}{m-n}\right)}
$$

where [$p v v$] is the sum of the weighted squares of the residuals, m the number of observation equations, and n the number of unknowns they contain. Accordingly, with
the corrections by adjustment from (207) and (208), and the corresponding weights from (189), we find for the probable error of an observation equation of weight unity ± 0016755. But by equation (i88) we assumed that probable error to be ± 0 or , and therefore the probable errors in (195) should all be increased in the ratio of 1.6755: .

The probable errors of the adjusted quantities next require consideration, and to avoid ambiguity in the symbol $d x$, which has hitherto been used to denote sometimes the differential of x, and sometimes the correction by adjustment to the observed value of x, we shall now inclose it in parentheses whenever it has the latter signification. The adjusted value of any observed quantity, x, will then be $x+(d x)$, and the first step towards finding its probable error will be to express $d[x+(d x)]$ in terms of all the observed quantities which it involves. But $d[x+(d x)]=d x+d(d x)$ and the equaions (194) are of the form $(d x)=u(d x)+b(d y)+c(d z)+$ etc. Further, as the equations (I87) were obtained from (185) by reversing the signs of the v 's and then differentiating, and as the values of the v 's from (187) were substituted in (193) in order to obtain (194), it follows that the latter equations are identical with the general expressions for - $d(d x)$. Accordingly

$$
d(d x)=-a . d x-b . d y-c . d z-\text { etc. }
$$

and by substituting that value in the expression above

$$
d[x+(d x)]=(1-a) d x-b . d y-c . d z-\text { etc. }
$$

Then putting $T r_{x}, T_{y}, T_{z}$, etc., for the probable errors of x, y, z, etc., the probable error of an adjusted quantity, $x+(d x)$, comes out

$$
\begin{equation*}
q \sqrt{ }\left[(1-u)^{2} r_{x}^{2}+\left(b r_{y}\right)^{2}+\left(c r_{z}\right)^{2}+\text { etc. }\right] \tag{209}
\end{equation*}
$$

The coefficients a, b, c, etc., are given in (194); the primitive probable error's r_{x}, r_{y}, r_{z}, etc., are appended to the observed quantities in (195) ; and q is the ratio $r^{\prime} / r^{\prime \prime}, r^{\prime}$ being the probable error found from the corrections by adjustment for a quantity of weight unity, and $r^{\prime \prime}$ the probahle error assumed for such a quantity in equation (188), namely oor. In Table V the columns headed R_{0} contain the primitive probable errors r_{x}, r_{y}, r_{z}, etc., or in other words, the primitive probable errors of p, P, \ldots, etc. ; while the columns headed R_{a} contain for each of these quantities the numerical value of the coefficient of q in the algorithm (209). Thus the corrected probable error of the observed value of any one of the quantities $p, \mathrm{P}, 2$, etc., will be $q \mathrm{R}_{0}$, and the probable error of its adjusted value will be $q \mathrm{R}_{\mathrm{a}}$.
Table V.-Constants required for computing the Probable Errors of the Observed and Adjusted Quantities.

The value of q used in computing the probable errors given in the second and fourth columns of Table VI was that found above, namely, 1.6755 .

From (207) and (208)

$$
d \mathrm{E}=+0.000000051440
$$

which gives, when substituted in (203)

$$
\begin{align*}
& \text { Mass of Mercury }=0.000 .000 \text { I } 19446 \tag{210}\\
& \text { Mass of Venus }=0.000002444954
\end{align*}
$$

By comparing the adjusted mass of the Earth in Table VI with Le Verrier's value in Table III we find

$$
\begin{equation*}
v^{\mathrm{ii}}=+0.08_{4} 875017 \pm 0.002499980 \tag{2II}
\end{equation*}
$$

and the substitution of that value in (199) gives

$$
\begin{align*}
v & =-0641659980 \tag{212}\\
v^{\mathrm{i}} & =-0.017502574
\end{align*}
$$

These values of v, ν^{i}, and ν^{ii} satisfy the first two of the normal equations (I30), and when substituted in the weighted observation equations (129) they leave the following residuals:

$$
\begin{array}{lll}
+0.0931^{\prime \prime} \pm 0.0231^{\prime \prime} & +0.0026^{\prime \prime} \pm 0.0879^{\prime \prime} & +0.1388^{\prime \prime} \\
-1.0486^{\prime \prime} \pm 0.1679^{\prime \prime} & -0.6258^{\prime \prime} \pm 0.0201^{\prime \prime} & +0.0298^{\prime \prime} \\
-0.527 \mathrm{I}^{\prime \prime} \pm 0.0260^{\prime \prime} & -0.8694^{\prime \prime} \pm 0.0108^{\prime \prime} & -0.7827^{\prime \prime} \\
-0.6104^{\prime \prime} \pm 0.0033^{\prime \prime} & -0.0264^{\prime \prime} \pm 0.0060^{\prime \prime} & -0.4675^{\prime \prime} \\
+0.2459^{\prime \prime} \pm 0.0000^{\prime \prime} & +0.1304^{\prime \prime} \pm 0.0128^{\prime \prime} & -0.3723^{\prime \prime} \\
-0.224 \mathrm{I}^{\prime \prime} \pm 0.0108^{\prime \prime} & +0.2165^{\prime \prime} \pm 00211^{\prime \prime} & -0.8443^{\prime \prime} \\
& & -0.8465^{\prime \prime}
\end{array}
$$

Taking into account the probable error of $\nu^{\text {ii }}$, these residuals give $\pm 0.385005^{\prime \prime}$ for the probable error of any one of the weighted observation equations (129); whence, with the weights from the general solution (198)

$$
\begin{align*}
& \text { Probable error of } v= \pm 0.072659 \tag{2I3}\\
& \text { Probable error of } \nu^{i}= \pm 0.004517
\end{align*}
$$

The data employed in this section, the corrections resulting from the least square adjustment, and the corrected values of the quantities investigated, are all brought together in Table VI. In computing the distances of the Sun and Moon from the Earth, the value used for the equatorial radius of the latter body is that given in (3), and the probable errors of the distances have been found from the formula

$$
\begin{equation*}
d \mathrm{D}=\mathrm{D} \cot p \cdot \operatorname{arc} \mathrm{I}^{\prime \prime} d p \tag{214}
\end{equation*}
$$

where D is the distance of either the Sun or Moon, p the corresponding horizontal parallax, and d 1 its probable error.

Table VI.-Results for the Epoch 1850.0, upon the assumption that the E'arth's F'lattening is $1: 293 \cdot 47$.

Quantities.	Observed values.	Corrections by adjustment.	Adjusted values.
p	$s \cdot \delta_{34} \pm 0.01441$	$\begin{aligned} & \prime \prime \\ & -0.02424 \end{aligned}$	$\begin{aligned} & \prime \prime \\ & 8.80976 \pm \\ & \hline 0.00674 \end{aligned}$
P	3423.08 ± 0.20274	-0.42357	3422.65643 ± 0.04746
${ }^{1}$	50.3570 ± 0.00416	+0.000 15	50.35715 ± 0.00415
n	9.2331 ± 0.01877	-0.01689	9.21621 ± 0.01002
Q	125.46 ± 0.58642	- 0.49795	124.96205 ± 0.09746
L	6.514 ± 0.02681	-0.000 97	6.51303 ± 0.02197
a	20.466 ± 0.01843	-0.01215	20.45385 ± 0.01506
${ }^{6}$	$497.0{ }^{\text {a }} \pm 1.709 \mathrm{or}^{\circ}$	+ $0.99094{ }^{\text {e }}$	49799094 ± 0.36616
V	$1863+7 \pm 60 \cdot 3 \mathrm{I}$ S miles	- II 1 009 miles	$186335^{\circ} 99 \pm 59.117$ miles
E	0.000003005097		$0 \cdot 000003056537$
	± 0.000000026902		± 0.000000007043
M	-	0.0123157 ± 0.00004211

Mass of Mercury $=\frac{0.35^{8} 340 \pm 0.072659}{3000000}=\frac{1}{8371937 \pm \mathrm{I} 77035^{2}}$
Mass of Venus $=\frac{0.982497 \pm 0.004517}{401847}=\frac{1}{409006 \pm 1880}$
Mass of Earth $=\frac{1.084875 \pm 0.002500}{354936}=\frac{1}{327168 \pm 754}$
Mass of Moon $=\frac{1}{81 \cdot 1973 \pm 0.2776}$
Mean distance from Earth to Sun $=92793500 \pm 70993$ miles.
Mean distance from Earth to Moon $=238857 \pm 3.312$ miles.

23.-ADDITIONAL FORMULE FOR PRECESSION.

If we pat $\phi^{\prime \prime}$ for the inclination of the moving ecliptic to the fixed ecliptic of $1850^{\circ} 0^{\prime} \theta^{\prime \prime}$ for the longitude of the heliocentric ascending node of the moving ecliptic, counted from the equinox of 1850°; and t for the time, counted in Julian years from 18500; then, according to Le Verrier*

$$
\begin{align*}
& p^{\prime \prime}=\phi^{\prime \prime} \sin \theta^{\prime \prime}=(g+\Gamma) t+r t^{2}=\left(g+r^{2}\right) \tag{215}\\
& q^{\prime \prime}=\phi^{\prime \prime} \cos \theta^{\prime \prime}=\left(g^{\prime}+\Gamma^{\prime}\right) t+r^{2} t^{2}
\end{align*}
$$

where

$$
\begin{aligned}
g= & +0.05888^{\prime \prime} \\
g^{\prime}= & -0.47566^{\prime \prime} \\
\Gamma= & +0.00627^{\prime \prime} v+0.07562^{\prime \prime} v^{\mathrm{i}}+0.00733^{\prime \prime} \nu^{\mathrm{iii}} \\
& -0.02496^{\prime \prime} v^{\mathrm{iv}}-0.00540^{\prime \prime} v^{\mathrm{s}}+0.00002^{\prime \prime} \nu^{\mathrm{vi}} \\
\Gamma^{\prime}= & -0.00525^{\prime \prime} v-0.28879^{\prime \prime} v^{\mathrm{i}}-0.00832^{\prime \prime} \nu^{\mathrm{iii}} \\
& -0.16009^{\prime \prime} v^{\mathrm{iv}}-0.01313^{\prime \prime} v^{\mathrm{v}}-0.00008^{\prime \prime} v^{\mathrm{ri}} \\
r= & \Sigma \delta_{2} p^{\prime \prime} \\
r^{\prime}= & \Sigma \delta_{2} q^{\prime \prime}
\end{aligned}
$$

Le Verrier has given only the numerical values of r and r^{\prime} which correspond to his adopted masses of the planets, and we have now to find the terms involving the variations of these masses. For that purpose we have the equations*

$$
\begin{align*}
\delta_{2} p^{\prime \prime} & =-\frac{m n^{\prime}}{2 \mu^{\prime}} M t^{2}\left(\xi \cos \tau^{\prime}-\chi \sin \tau^{\prime}\right) \\
\delta_{2} q^{\prime \prime} & =+\frac{m n^{\prime}}{2 \mu^{\prime}} M t^{2}\left(\xi \sin \tau^{\prime}-\chi \cos \tau^{\prime}\right) \tag{2I7}\\
\xi & =\frac{1}{2}\left(\delta p-\delta p^{\prime}\right) \sin \tau^{\prime}+\frac{1}{2}\left(\delta q-\delta q^{\prime}\right) \cos \tau^{\prime} \\
\chi & =\frac{1}{2}\left(\delta p-\delta p^{\prime}\right) \cos \tau^{\prime}-\frac{1}{2}\left(\delta q-\delta q^{\prime}\right) \sin \tau^{\prime}
\end{align*}
$$

whence, by eliminating ξ and χ

$$
\begin{align*}
& \delta_{2} p^{\prime \prime}=-\frac{m n^{\prime}}{4 \mu^{\prime}} \mathrm{M}\left(\delta q-\delta q^{\prime}\right) t^{2} \tag{2I8}\\
& \delta_{2} q^{\prime \prime}=+\frac{m n^{\prime}}{4 \mu^{\prime}} \mathrm{M}\left(\delta p-\delta p^{\prime}\right) t^{2}
\end{align*}
$$

As here written, these equations apply only to the interior planets. To make them general, we put

$$
\mathrm{C}^{\prime}=\frac{m}{2 \mu^{\prime}} n^{\prime} \quad \mathrm{C}=\frac{m^{\prime}}{2 \mu} \alpha n
$$

and then in (218), instead of $m n^{\prime} / 4 \mu^{\prime}$, the coefficient $\frac{1}{2} \mathrm{C}^{\prime}$ must be used for plamets within the Earth's orbit, and $\frac{1}{2} \mathrm{C}$ for those outside that orbit. By employing Le Verrier's numerical values of $\mathrm{C}, \mathrm{C}^{\prime}, \mathrm{M}, \delta p$, and $\delta q, t$ we obtain the following expressions:

Action of Mercury.

$$
\begin{align*}
& 1000000 \delta_{2} p^{\prime \prime}=(\mathrm{I}+v)\left\{\begin{array}{l}
+011539^{\prime \prime}+0.0008^{\prime \prime} v+0.0574^{\prime \prime} \nu^{\mathrm{i}} \\
+0.0117^{\prime \prime} \nu^{\mathrm{ii}}+0.0016^{\prime \prime} v^{\mathrm{iii}}+0.041^{\prime \prime} \nu^{\mathrm{iv}} \\
+0.0026^{\prime \prime} v^{\mathrm{v}} 0.0000^{\prime \prime} v^{\text {vi }}
\end{array}\right\} t^{2} \\
& 1000000 \delta_{2} q^{\prime \prime}=(\mathrm{I}+v)\left\{\begin{array}{l}
+0.09517^{\prime \prime}+0.0010^{\prime \prime} v+00564^{\prime \prime} \nu^{\mathrm{i}} \\
+0.0140^{\prime \prime} \nu^{\mathrm{ii}}+0.0015^{\prime \prime} \nu^{\mathrm{iii}}+00217^{\prime \prime} \nu^{\mathrm{iv}} \\
+00006^{\prime \prime} \nu^{\mathrm{r}} 0.0000^{\prime \prime} \nu^{\text {vi }}
\end{array}\right\} t^{2} \tag{219}
\end{align*}
$$

Action of Venus.

$$
\begin{align*}
& 1000000 \delta_{2} p^{\prime \prime}=\left(\mathrm{I}+\nu^{\mathrm{i}}\right)\left\{\begin{array}{l}
+12.63647^{\prime \prime}-0.0199^{\prime \prime} v+3.6245^{\prime \prime} \nu^{\mathrm{i}} \\
+4.8322^{\prime \prime} \nu^{\text {iii }}+0.1485^{\prime \prime} v^{\mathrm{iii}}+3.8396^{\prime \prime} \nu^{\text {iv }} \\
+0.2073^{\prime \prime} \nu^{v}+0.0030^{\prime \prime} \nu^{\mathrm{vi}}
\end{array}\right\} t^{2} \\
& 1000000 \delta_{2} q^{\prime \prime}=\left(1+v^{\mathrm{i}}\right)\left\{\begin{array}{l}
+2.72626^{\prime \prime}-0.2525^{\prime \prime} v+0.949 \mathrm{I}^{\prime \prime} \nu^{\mathrm{i}} \\
+1.2656^{\prime \prime} \nu^{\mathrm{ii}}+0.0838^{\prime \prime} \nu^{\mathrm{iii}}+0.6682^{\prime \prime} \nu^{\mathrm{iv}} \\
+0.0113^{\prime \prime} \nu^{v}+0.0008^{\prime \prime} \nu^{\mathrm{vi}}
\end{array}\right\} t^{2} \tag{220}
\end{align*}
$$

Action of Mars.

$$
\begin{align*}
& \text { I } 000000 \delta_{2} \nu^{\prime \prime}=\left(1+v^{\text {iii }}\right)\left\{\begin{array}{l}
+0.38362^{\prime \prime}+0.0032^{\prime \prime} v^{\prime \prime}+0.1972^{\prime \prime} \nu^{\mathrm{i}} \\
+0.0370^{\prime \prime} \nu^{\text {ii }}+0.0060^{\prime \prime} \nu^{\mathrm{iii}}+0.1377^{\prime \prime} \nu^{\mathrm{iv}} \\
+0.0023^{\prime \prime} v^{v}+0.0001^{\prime \prime} \nu^{\text {vi }}
\end{array}\right\} t^{2} \tag{22I}\\
& 1000000 \delta_{2} q^{\prime \prime}=\left(1+v^{\mathrm{iii}}\right)\left\{\begin{array}{l}
+0.36157^{\prime \prime}+0.0038^{\prime \prime} v+0.0569^{\prime \prime} \nu^{\mathrm{i}} \\
+0.0326^{\prime \prime} \nu^{\mathrm{ii}}+0.0053^{\prime \prime} \nu^{\mathrm{iii}}+0.2492^{\prime \prime} \nu^{\mathrm{iv}} \\
+0.0135^{\prime \prime} \nu^{v}+0.0002^{\prime \prime} \nu^{\mathrm{vi}}
\end{array}\right\} t^{2}
\end{align*}
$$

Action of Jupiter.

$$
\begin{align*}
& \text { I } 000000 \delta_{2} p^{\prime \prime}=\left(\mathrm{I}+v^{\text {iv }}\right)\left\{\begin{array}{l}
+5.87087^{\prime \prime}+0.0893^{\prime \prime} v+4.939 \mathrm{I}^{\prime \prime} \nu^{\mathrm{i}} \\
+0.0036^{\prime \prime} \nu^{\mathrm{ii}}+0.1423^{\prime \prime} \nu^{\mathrm{iii}}+2.7374^{\prime \prime} \nu^{\mathrm{ir}} \\
-2.0555^{\prime \prime} \nu^{\mathrm{r}}+0.0145^{\prime \prime} \nu^{\mathrm{vi}}
\end{array}\right\} t^{2} \\
& 1000000 \delta_{2} q^{\prime \prime}=\left(\mathrm{I}+\nu^{\mathrm{iv}}\right)\left\{\begin{array}{l}
+2.64680^{\prime \prime}+0.1065^{\prime \prime} \nu+1.2925^{\prime \prime} \nu^{\mathrm{i}} \\
-0.0005^{\prime \prime} \nu^{\text {ii }}+0.1240^{\prime \prime} \nu^{\mathrm{iii}}-0.4268^{\prime \prime} \nu^{\text {iv }} \\
+\mathrm{I}^{\circ} 5526^{\prime \prime} \nu^{\text {V }}-0.0096^{\prime \prime} \nu^{\text {vi }}
\end{array}\right\} t^{2} \tag{222}
\end{align*}
$$

Action of Suturn.

$$
\begin{align*}
& 1000000 \delta_{2} p^{\prime \prime}=\left(1+v^{5}\right)\left\{\begin{array}{l}
+0.64359^{\prime \prime}+0.004 \mathrm{I}^{\prime \prime} v+0.228 \mathrm{I}^{\prime \prime} v^{\mathrm{i}} \\
0.0000^{\prime \prime} \nu^{\mathrm{ii}}+0.0066^{\prime \prime} v^{\mathrm{iii}}+0.3869^{\prime \prime} v^{\mathrm{iv}} \\
+0.0104^{\prime \prime} v^{\mathrm{V}}+0.0064^{\prime \prime} \nu^{\mathrm{ri}}
\end{array}\right\} t^{2} \tag{223}\\
& \text { I } 000000 \delta_{2} q^{\prime \prime}=\left(\mathrm{I}+v^{\mathrm{v}}\right)\left\{\begin{array}{l}
-0.14562^{\prime \prime}+0.0049^{\prime \prime} v+0.0597^{\prime \prime} \nu^{\mathrm{i}} \\
0.0000^{\prime \prime} \nu^{\mathrm{ii}}+0.0058^{\prime \prime} v^{\mathrm{iii}}-0.207 \mathrm{I}^{\prime \prime} v^{\text {ir }} \\
-0.0043^{\prime \prime} v^{\text {r }}-0.0048^{\prime \prime} \nu^{\text {vi }}
\end{array}\right\} t^{2}
\end{align*}
$$

Action of Cranus.

$$
\begin{align*}
& 1000000 \delta_{2} p^{\prime \prime}=\left(1+v^{\text {vi }}\right)\left\{\begin{array}{l}
+0.00590^{\prime \prime}+0.000 \mathrm{I}^{\prime \prime} v+0.0040^{\prime \prime} \nu^{\mathrm{i}} \\
0.0000^{\prime \prime} v^{\mathrm{ii}}+0.000 \mathrm{I}^{\prime \prime} \nu^{\mathrm{iii}}+0.002 \mathrm{I}^{\prime \prime} \nu^{\mathrm{iv}} \\
-0.0004^{\prime \prime} \nu^{\mathrm{r}} 0.0000^{\prime \prime} \nu^{\text {vi }}
\end{array}\right\} t^{2} \\
& 1000000 \delta_{2} q^{\prime \prime}=\left(1+v^{\text {ri }}\right)\left\{\begin{array}{l}
+000152^{\prime \prime}+0.0001^{\prime \prime} \nu+0.0011^{\prime \prime} \nu^{\text {i }} \\
0.0000^{\prime \prime} \nu^{\text {ii }}+0.0001^{\prime \prime} v^{\text {iii }}-0.0003^{\prime \prime} \nu^{\text {iv }}
\end{array}\right\} t^{2} \tag{224}
\end{align*}
$$

The factors given on pages 42 and 72 for converting Le Verrier's masses into those we have adopted are

$$
\begin{array}{lll}
v=-0.641660 & v^{\mathrm{iii}}=-0.133558 & v^{v}=+0.002970 \\
v^{\mathrm{i}}=-0.017503 & v^{\mathrm{iv}}=+0.002339 & v^{\mathrm{ti}}=+0.061947 \\
v^{\mathrm{ii}}=+0.084875 & &
\end{array}
$$

and by substituting them in the equations (216), and (219) to (224), the following numbers result:

$$
g+\Gamma=+0.05^{2} 481^{\prime \prime} \quad g^{\prime}+\Gamma^{\prime}=-0^{\circ} 466543^{\prime \prime}
$$

Action of Mercury	$\begin{gathered} \delta_{2 l^{\prime \prime}} \\ +0.000000041 \mathrm{I}^{\prime \prime} \end{gathered}$	$\begin{gathered} \delta_{2} q^{\prime \prime} \\ +0.0000000339^{\prime \prime} \end{gathered}$
Action of Venus	+ 127587	29176
Action of Mars	+ 3299	+ 3126
Action of Jupiter	+ 57230	+ 25482
Action of Saturn	+ 6393	1518
Action of Urams	+ 61	15 +
Sum	-0co or 9498	

With our values of the masses of the planets we therefore have

$$
\begin{align*}
& \varphi^{\prime \prime} \sin \theta^{\prime \prime}=+0.052481^{\prime \prime} t+0.000019498^{\prime \prime} t^{2} \\
& \varphi^{\prime \prime} \cos \theta^{\prime \prime}=-0.466543^{\prime \prime} t+0.000005662^{\prime \prime} t^{2} \tag{226}
\end{align*}
$$

If we restore the terms for taking account of changes in the masses, and put

$$
\begin{array}{ll}
g=+0.05248 \mathrm{I}^{\prime \prime} & \delta=+0.000019498^{\prime \prime} t+\Gamma \\
g^{\prime}=-0466543^{\prime \prime} & \delta^{\prime}=+0.000005662^{\prime \prime} t+\Gamma^{\prime}
\end{array}
$$

then the equations (226) may be written

$$
\varphi^{\prime \prime} \sin \theta^{\prime \prime}=g t+\delta t \quad \varphi^{\prime \prime} \cos \theta^{\prime \prime}=g^{\prime} t+\delta^{\prime} t
$$

the solution of which is*

$$
\begin{aligned}
\phi^{\prime \prime} & =\left(g^{2}+g^{\prime 2}\right)^{\dot{d}} t+\frac{g \delta+g^{\prime} \delta^{\prime}}{\sqrt{ }\left(g^{2}+g^{\prime 2}\right)} t \\
\tan \theta_{0}^{\prime \prime} & =g / g^{\prime} \\
\theta^{\prime \prime} & =\theta_{0}^{\prime \prime}+\frac{1}{\operatorname{arc~} 1^{\prime \prime}} \cdot \frac{g^{\prime} \delta-g \delta^{\prime}}{g^{2}+g^{\prime 2}}
\end{aligned}
$$

and with the values of Γ and Γ^{\prime} given in (216), we find from these expressions

$$
\left.\begin{array}{l}
\varphi^{\prime \prime}=0.469486^{\prime \prime}(t-1850)-0.000003447^{\prime \prime}(t-1850)^{2} \\
+\left\{\begin{array}{l}
+0.00592^{\prime \prime} v+0.29543^{\prime \prime} \nu^{\mathrm{i}} \\
+000909^{\prime \prime} \nu^{\text {iii }}+0.15630^{\prime \prime} v^{\text {iv }}
\end{array}\right\}(t-1850) \\
+0.01244^{\prime \prime} \nu^{\mathrm{v}}+0.00008^{\prime \prime} \nu^{\mathrm{ri}}
\end{array}\right\} \begin{gathered}
\theta^{\prime \prime}=173^{\circ} 34^{\prime} 54.6^{\prime \prime}-8.7907^{\prime \prime}(t-1850) \\
-2480^{\prime \prime} v-18832^{\prime \prime} v^{\mathrm{i}} \tag{227}\\
-2792^{\prime \prime} \nu^{\mathrm{iii}}+18760^{\prime \prime} \nu^{\text {iv }} \\
-3002^{\prime \prime} v^{\mathrm{v}}-\quad 5^{\prime \prime} \nu^{v i}
\end{gathered}
$$

To prevent the possibility of misapprehension, it may be well to state explicitly that the v s in the equations (227) relate to the values of the masses adopted in the present paper, and not to Le Verrier's values.

Reverting to the equations (158), and bearing in mind that in them the unit of mass is the Earth without the Moon, we have in the first equation of the group

$$
\frac{M}{S}=\frac{\operatorname{EM}}{\mathrm{I}+\mathrm{M}} \quad \frac{r^{3}}{r_{1}^{3}}=\frac{\sin ^{3} \mathrm{P}}{\sin ^{3} p}
$$

whence, by substitution

$$
\begin{equation*}
\varepsilon=\frac{\text { EM } \sin ^{3} P}{(1+M) \sin ^{3} p} \tag{228}
\end{equation*}
$$

and from the second and third equations

$$
\begin{align*}
& \varepsilon=\frac{\mathrm{Ad}}{\mathrm{C}=-\mathrm{Bid}} \tag{229}\\
& x=\frac{\mathrm{C} 2-\mathrm{B} \cdot \mathrm{~d}}{\mathrm{AC} \cos \omega \%_{0}} \tag{230}
\end{align*}
$$

With the adjusted values of $p, \mathrm{P}, \underset{2}{2}, \mathrm{~A}, \mathrm{E}$, and M from Table VI, and the values of A, B, and C from (164), these formule give

$$
\begin{equation*}
\varepsilon=2 \cdot 180260 \quad x=17.348662^{\prime \prime} \tag{231}
\end{equation*}
$$

Passing now to the analytical formulæ for precession and nutation given by Serret in his admirable memoir,* after applying the corrections explained in connection with equation (16 I), putting

$$
\begin{array}{ll}
\mathrm{A}=\mathrm{I}+\frac{3}{2} e_{1}^{2} & \mathrm{D}=\frac{1}{2}-\frac{5}{4} e_{1}^{2} \\
\mathrm{~B}=\mathrm{I}+\frac{3}{2} e_{2}^{2}-6 \gamma^{2} & \mathrm{E}=\frac{\mathrm{I}}{2}-\frac{5}{4} e_{2}^{2}-\gamma^{2} \\
\mathrm{C}=\frac{2 \gamma}{\mu}\left(\mathrm{I}+\frac{3}{2} e_{2}^{2}-\frac{5}{2} y^{2}\right) &
\end{array}
$$

and making some transformations, we have, in our own notation

$$
\left.\begin{array}{l}
a=(\mathrm{A} x+\mathrm{B} \varkappa \varepsilon) \cos \omega_{0}=2 \\
b=\frac{1}{2}(\mathrm{~A} x+\mathrm{B} \varkappa \varepsilon) g^{\prime} \frac{\cos 2 \omega_{0}}{\sin \omega_{0}}+\frac{3}{2} \pi e_{1} e_{1}^{\prime} \cos \omega_{0} \\
b=a g^{\prime} \cot 2 \omega_{0}+\frac{3}{2} \varkappa e_{1} e_{1}^{\prime} \cos \omega_{0} \\
f=\frac{1}{2}(\mathrm{~A} x+\mathrm{B} \varkappa \varepsilon) g \cos \omega_{0}=\frac{1}{2} a g \\
\mathrm{P}=a-(g+\Gamma) \cot \omega_{0} \\
\mathrm{P}^{\prime}=b-\left(a y^{\prime}+r\right) \cot \omega_{0}+g g^{\prime} \cot ^{2} \omega_{0} \\
\mathrm{Q}=g^{\prime}+\Gamma^{\prime} \tag{233}\\
\mathrm{Q}^{\prime}=f+r^{\prime}-a g+\frac{1}{2} g^{2} \cot \omega_{0}=r^{\prime}-f+\frac{1}{2} g^{2} \cot \omega_{0}
\end{array}\right\}
$$

$$
\left.\begin{array}{rl}
\begin{array}{l}
\psi=a t+b t^{2}+\Psi \\
\omega \\
=\omega_{0}+f t^{2}+\Omega \\
\psi_{1}
\end{array}=\mathrm{P} t+\mathrm{P}^{\prime} t^{2}+\Psi \\
\omega_{1}=\omega_{0}+\mathrm{Q} t+\mathrm{Q}^{\prime} t^{2}+\Omega \\
\Psi= & +\varkappa \varepsilon \mathrm{C} \frac{\cos 2 \omega_{0}}{\sin \omega_{0}} \sin \delta-\varkappa \varepsilon \frac{\gamma^{2}}{\mu} \cos \omega_{0} \sin 2 \Omega
\end{array}\right\}
$$

The second and third equations of (158) are respectively identical with the first equation of (232), and with the coefficient of $\cos \Omega$ in (237), that coefficient being the quantity known as the constant of nutation. e_{1}^{\prime} is the yearly variation of e_{1}. In equations (236) and $(237) \odot$ and $\&$ denote respectively the mean longitudes of the Sun and Moon, while A_{\odot} and A_{\odot} denote the mean anomalies of the same bodies. Usually the symbols \odot and \varangle are employed to denote the true longitudes of the Sun and Moon, and on account of the smallness of the terms which they affect, no material error will arise if they are so interpreted in the present case.

As the numerical values of the quantities entering formulæ (232) to (237) are scattered throughout the preceding pages, they are collected here for convenience of reference:
$e_{1}=+0.016771049 \quad g=+0.052481^{\prime \prime}$
$e_{1}^{\prime}=-0.0000004245 \quad g^{\prime}=-0.466543^{\prime \prime}$
$e_{2}=+0.054899720 \quad r=+0.000019498^{\prime \prime}$
$\mu=-0.337815984 \quad r^{\prime}=+0.000005662^{\prime \prime}$
$\gamma=+0.044886793 \quad \omega_{0}=23^{\circ} 27^{\prime} 31^{\prime} 36^{\prime \prime}$
$m=\frac{2 \pi \cdot 365 \frac{1}{4}}{365.2563578}=6.283075940$
$m^{\prime}=\frac{2 \pi \cdot 365 \frac{1}{4}}{27.32166116}=83.99684852$
$\widetilde{w}_{1}=$ the sidereal motion of the solar perigee in $365 \frac{1}{4}$ days $=11.3618^{\prime \prime}+0^{\prime} 1375^{\prime \prime}$
= II $4993^{\prime \prime}$ according to HANSEN*; or $61^{\circ} 6995^{\prime \prime}-50.2357^{\prime \prime}=1 \mathrm{I} 4638^{\prime \prime}$
according to Le Verriert. We adopt the mean, namely, +1I48i6"
$=0.000055664$ of radius.
$\varpi_{1}^{\prime}=$ the sidereal motion of the lunar perigee in $365 \frac{1}{4}$ days, which is according
to $H \operatorname{Hasen} \ddagger \frac{d}{d t}\left(\omega-\Theta-\psi_{1}\right)=216115.2207^{\prime \prime}-69629.396 \mathrm{I}^{\prime \prime}-50.2230^{\prime \prime}$
$=+146435 \cdot 6016^{\prime \prime}=0.709939830$ of radius.

In (236) and $(237) \omega_{0}$ is the true obliquity of the ecliptic at the instant for which Ψ and Ω are required，and we should there take

$$
\omega_{0}=23^{\circ} 27^{\prime} 31^{\prime} 36^{\prime \prime}-0.46654^{\prime \prime}(t-1850)-0.00000073^{\prime \prime}(t-1850)^{2}
$$

whence

$$
\begin{aligned}
& \text { Log. } \frac{\cos 2 \omega_{0}}{\sin \omega_{0}}=0.2344742+0.000004365(t-1850) \\
& \text { Log. } \cos \omega_{0}=9.9625337+0.000000426(t-1850) \\
& \text { Log. } \sin \omega_{0}=9.5999792-0.000002264(t-1850)
\end{aligned}
$$

These numbers must now be substituted in the formula under consideration，and we shall follow Le Verrier and Selrret in first giving the results for luni－solar pre－ cession，and for untation，with ${ }^{2}, x$ and ε retained as symbols．They are

$$
\begin{align*}
& u=+[9.9627169-10] u+[9.9592345-10] u \varepsilon=2 \\
& b=-[4.2902802-10] x-[4.2846117-10] \mu \varepsilon \\
& b=-[43253772-10] \text { 热一 [199106-10] } x \\
& f=+[3.067264-10] x+[3.063782-10] \pi \varepsilon \\
& f=+[3 \cdot 104547-10] \\
& \Psi=-[9.6587186+0.000004365(t-1850)-10] \mu \varepsilon \sin 8 \\
& +[773809+0.000000426(t-1850)-10] \pi \varepsilon \sin 28 \\
& -[8.863010+0.000000426(t-1850)-10] x \sin 2 \odot \tag{239}\\
& -[7773219+0.000000426(t-1850)-10] \mu \varepsilon \sin 2 \mathbb{Q} \\
& +[7.86605+0.000000426(t-1850)-10] x \sin A_{\odot} \\
& +[7.25865+0.000000426(t-1850)-10] \mu \varepsilon \sin \mathrm{A}_{0} \\
& \Omega=+[9.3867779+0.000000426(t-1850)-10] \mu \varepsilon \cos \Omega \\
& -[737554-0.000002264(t-1850)-10] \pi \varepsilon \cos 28 \\
& +[8.500455-0.000002264(t-1850)-10] x \cos 2 \odot \tag{240}\\
& +[7.36963-0.000002264(t-1850)-10] \mu \varepsilon \cos 2 \mathbb{Q}
\end{align*}
$$

After substituting the adjusted value of \mathfrak{z} from Table VI，and the values of x and ε from（231），the formule（238）to（240），in comection with（233）to（235），give

$$
\begin{align*}
& \psi=\left\{\begin{array}{l}
+50.35715^{\prime \prime}+0.0144^{\prime \prime} v+0.1743^{\prime \prime} v^{\mathrm{i}} \\
+0.0169^{\prime \prime} v^{\mathrm{iii}}-0.0575^{\prime \prime} v^{\mathrm{ir}}-0.0124^{\prime \prime} v^{\mathrm{L}}
\end{array}\right\}(t-1850) \\
& -0.00010669^{\prime \prime}(t-1850)^{2}+\Psi \\
& \omega=23^{\circ} 27^{\prime} 31.47^{\prime \prime}+0.0000064 \mathrm{I}^{\prime \prime}(t-1850)^{2}+\Omega \\
& \psi_{1}=50.23622^{\prime \prime}(t-1850)+0.00011022^{\prime \prime}(t-1850)^{2}+\Psi \tag{241}\\
& \omega_{1}=23^{\circ} 27^{\prime} 3 \mathrm{I}^{\prime} 47^{\prime \prime}-\left\{\begin{array}{l}
+0.46654^{\prime \prime}+0.0053^{\prime \prime} v+0.2888^{\prime \prime} \nu^{\mathrm{i}} \\
+0.0083^{\prime \prime} v^{\mathrm{iii}}+0.160 \mathrm{I}^{\prime \prime} v^{\mathrm{iv}}+0.0 \mathrm{I} 3 \mathrm{I}^{\prime \prime} v^{\mathrm{j}}
\end{array}\right\}(t-1850) \\
& -0.00000073^{\prime \prime}(t-1850)^{2}+\Omega
\end{align*}
$$

$$
\begin{align*}
\Psi= & -\left\{17^{\prime 2} 282^{\prime \prime}+0.0001732^{\prime \prime}(t-1850)\right\} \sin \Omega \\
& +\left\{0.2070^{\prime \prime}+0.0000002^{\prime \prime}(t-1850)\right\} \sin 2 \Omega \\
& -\left\{1.2655^{\prime \prime}+0.0000012^{\prime \prime}(t-1850)\right\} \sin 2 \odot \tag{242}\\
& -\left\{0.2042^{\prime \prime}+0.0000002^{\prime \prime}(t-1850)\right\} \sin 2 \mathbb{C} \\
& +\left\{0.1274^{\prime \prime}+0.0000001^{\prime \prime}(t-1850)\right\} \sin \mathrm{A}_{\odot} \\
& +\left\{0.0686^{\prime \prime}+0.0000001^{\prime \prime}(t-1850)\right\} \sin \mathrm{A}_{\odot} \\
\Omega= & +\left\{9^{\left..2162^{\prime \prime}+0.0000090^{\prime \prime}(t-1850)\right\} \cos \Omega}\right. \\
& -\left\{0.0898^{\prime \prime}-0.0000005^{\prime \prime}(t-1850)\right\} \cos 28 \\
& +\left\{0.5492^{\prime \prime}-0.0000020^{\prime \prime}(t-1850)\right\} \cos 2 \odot \tag{243}\\
& +\left\{0.0886^{\prime \prime}-0.0000005^{\prime \prime}(t-1850)\right\} \cos 2 \mathbb{C}
\end{align*}
$$

Respecting ω_{0}, it is to be remarked that Le Verrier's data* give $\omega_{1}=23^{\circ} 27^{\prime}$ $49^{\circ} 804^{\prime \prime}$ for the epoch 1810%, and by bringing that up to 1850° with our yearly motion, $-0.466543^{\prime \prime}$, the value of ω_{0} given in (24I) is obtained. Of course the $\nu \mathrm{s}$ in (241) relate to the masses of the planets adopted in this paper, and not to Le Yerrier's masses.

It yet remains to deduce from the group of formulæ (24I) the ten quantities usually employed in computations relating to precession, and these quantities will be given in a shape permitting of their ready reference to any desired equinox and ecliptic. The transformation from one equinox and ecliptic to another might be effected by Hansen's formulæ, \dagger but they involve the constants g, g^{\prime}, r and r^{\prime}, whose values are not always known, and to avoid that difficulty we shall develop formulæ involving only the coefficients in equations (234) and (235).

If $d \psi / d t$ is the annual change of ψ at the instant t_{0}, then by (232) and (234)

$$
\begin{align*}
\frac{d \psi}{d t} & =a \frac{\cos \omega_{1}}{\cos \omega_{0}} \\
\psi & =a \frac{\cos \omega_{1}}{\cos \omega_{0}}\left(t-t_{0}\right)+b\left(t-t_{0}\right)^{2} \tag{244}
\end{align*}
$$

But by (235), which relates to the epoch T,

$$
\begin{equation*}
\omega_{1}=\omega_{0}+\mathrm{Q}\left(t_{0}-\mathrm{T}\right)+\mathrm{Q}^{\prime}\left(t_{0}-\mathrm{T}\right)^{2} \tag{245}
\end{equation*}
$$

whence, with sufficient accuracy

$$
\cos \omega_{1}=\cos \omega_{0}-\mathrm{Q} \sin \omega_{0}\left(t_{0}-\mathrm{T}\right)
$$

and by substituting that value in (244), the expression for ψ given in (273) results. Further, as in the second equation of (234) ω_{0} is the true obliquity of the ecliptic at the instant T, in order to change the epoch from 'T' to t_{0} we have only to substitute ω_{1} for ω_{0}; and by so doing the expression for ω given in (273) was obtained.

The expressions for ψ_{1} and ω_{1}, in (235), are of the form

$$
u=\mathrm{A}+\mathrm{B}(t-\mathrm{T})+\mathrm{C}\left(t-\mathrm{I}^{\prime}\right)^{2}
$$

where

$$
\mathrm{B}=-\frac{d u}{d \mathrm{~T}} \quad \mathrm{C}=\frac{1}{2} \frac{d^{2} u}{2} l^{\prime} \mathrm{T}^{2}
$$

and consequently, the values which they assume when the origin of time is changed from T to t_{0} may be found by the algorithm

$$
\begin{aligned}
u^{\prime}=\mathrm{A} & +\mathrm{B}\left(t_{0}-\mathrm{T}\right)+\mathrm{C}\left(t_{0}-\mathrm{T}\right)^{2} \\
& +\left[\mathrm{B}+2 \mathrm{C}\left(t_{0}-\mathrm{T}\right)\right]\left(t-t_{0}\right)+\mathrm{C}\left(t-t_{0}\right)^{2}
\end{aligned}
$$

The results are given in (274).
If λ is the planetary precession during the interval $\left(t-t_{0}\right)$, and $\frac{1}{2}\left(\omega_{1}+\omega\right)$ $=\omega_{0}+d \omega_{0}$, then *

$$
\begin{align*}
\lambda & =\left(\psi-\psi_{1}\right) \sec \left(\omega_{0}+d \omega_{0}\right) \tag{246}\\
& =\left(\psi-\psi_{1}\right) \sec \omega_{0}+\left(\psi-\psi_{1}\right) d \omega_{0} \sec \omega_{0} \tan \omega_{0}
\end{align*}
$$

But from (273) and (274)

$$
\begin{align*}
\psi-\psi_{1}= & {\left[a-\mathrm{P}^{\prime}-\left(2 \mathrm{P}^{\prime}+a \mathrm{Q} \tan \omega_{0}\right)\left(t_{0}-\mathrm{T}\right)\right]\left(t-t_{0}\right)+\left(b-\mathrm{P}^{\prime}\right)\left(t-t_{0}\right)^{2} } \\
\frac{1}{2}\left(\omega_{1}+\omega\right)= & \omega_{0}+\mathrm{Q}\left(t_{0}-\mathrm{T}\right)+\mathrm{Q}^{\prime}\left(t_{0}-\mathrm{T}\right)^{2} \tag{247}\\
& +\left[\frac{1}{2} \mathrm{Q}+\mathrm{Q}^{\prime}\left(t_{0}-\mathrm{T}\right)\right]\left(t-t_{0}\right)+\frac{1}{2}\left(f+\mathrm{Q}^{\prime}\right)\left(t-t_{0}\right)^{2}
\end{align*}
$$

whence

$$
\begin{equation*}
d \omega_{0}=\mathrm{Q}\left(t_{0}-\mathrm{T}\right)+\mathrm{Q}^{\prime}\left(t_{0}-\mathrm{T}\right)^{2}+\left[\frac{1}{2} \mathrm{Q}+\mathrm{Q}^{\prime}\left(t_{0}-\mathrm{T}\right)\right]\left(t-t_{0}\right)+\frac{1}{2}\left(f+\mathrm{Q}^{\prime}\right)\left(t-t_{0}\right)^{2} \tag{248}
\end{equation*}
$$

and by substituting these values of $\left(\psi-\psi_{1}\right)$ and $d \omega_{0}$ in (246), and rejecting all terms above the second order with respect to $\left(t_{0}-\mathrm{T}\right)$ and $\left(t-t_{0}\right)$, the expression for λ given in (273) results.

To find m and n we have the well-known formulx

$$
\begin{equation*}
m=\frac{d \psi}{d t} \cos \omega-\frac{d \lambda}{d t} \quad n=\frac{d \psi}{d t} \sin \omega \tag{249}
\end{equation*}
$$

But from (273)

$$
\begin{aligned}
& \frac{d \psi}{d t}=a-a \mathrm{Q} \tan \omega_{0}\left(t_{0}-\mathrm{T}\right)+2 b\left(t-t_{0}\right) \\
& { }_{d \lambda}^{d \lambda}=+\sec \omega_{0}(a-\mathrm{P})-\sec \omega_{0}\left(2 \mathrm{P}^{\prime}+\mathrm{P} \mathrm{Q} \tan \omega_{0}\right)\left(t_{0}-\mathrm{T}\right) \\
& \left.+2 \sec \omega_{0} \Gamma b-\Gamma^{\prime}+\frac{1}{2} Q(a-P) \tan \omega_{0}\right]\left(t-t_{0}\right) \\
& \omega_{0}=\omega_{0}+\mathrm{Q}\left(t_{0}-\mathrm{T}\right)+\mathrm{Q}^{\prime}\left(t_{0}-\mathrm{T}\right)^{2}+f\left(t-t_{0}\right)^{2} \\
& \sin \omega=\sin \omega_{0}+\left[Q\left(t_{0}-T^{\prime}\right)+\mathrm{Q}^{\prime}\left(t_{0}-\mathrm{T}^{\prime}\right)^{2}+f\left(t-t_{0}\right)^{2}\right] \cos \omega_{0} \\
& \cos (0)=\cos \omega_{0}-\left[Q\left(t_{0}-T\right)+Q^{\prime}\left(t_{0}-T\right)^{2}+f^{\prime}\left(t-t_{0}\right)^{2}\right] \sin \omega_{0}
\end{aligned}
$$

and by substituting these values in the formulæ (249), and rejecting all terms above the second order with respect to $\left(t_{0}-\mathrm{T}\right)$ and $\left(t-t_{0}\right)$, we find

$$
\begin{align*}
& m=+a \cos \omega_{0}-(u-\mathrm{P}) \text { sec } \omega_{0} \\
& +\left[\left(2 \mathrm{P}^{\prime}+\mathrm{PQ} \tan \omega_{0}\right) \sec \omega_{0}-2 a \mathrm{Q} \sin \omega_{0}\right]\left(t_{0}-\mathrm{T}\right) \\
& +u \sin \omega_{0}\left(\mathrm{Q}^{2} \tan \omega_{0}-\mathrm{Q}^{\prime}\right)\left(t_{0}-\mathrm{T}\right)^{2} \tag{250}\\
& -\left\{\begin{array}{l}
+\left[2\left(b-\mathrm{P}^{\prime}\right)+\mathrm{Q}(a-\mathrm{P}) \tan \omega_{0}\right] \sec \omega_{0} \\
-2 b \cos \omega_{0}+2 b \mathrm{Q} \sin \omega_{0}\left(t_{0}-\mathrm{T}\right)
\end{array}\right\}\left(t-t_{0}\right) \\
& -u f \sin \omega_{0}\left(t-t_{0}\right)^{2} \\
& n=+a \sin \omega_{0}+a \mathrm{Q}\left(\cos \omega_{0}-\sin \omega_{0} \tan \omega_{0}\right)\left(t_{0}-\mathrm{T}\right) \\
& -a \cos \omega_{0}\left(\mathrm{Q}^{2} \tan \omega_{0}-\mathrm{Q}^{\prime}\right)\left(t_{0}-\mathrm{T}\right)^{2} \tag{251}\\
& +2 b\left[\sin \omega_{0}+\mathrm{Q} \cos \omega_{0}\left(t_{0}-\mathrm{T}\right)\right]\left(t-t_{0}\right) \\
& +{ }^{t} f \cos \omega_{0}\left(t-t_{0}\right)^{2}
\end{align*}
$$

When converted into numbers by means of the coefficients in (241), these expressions become

$$
\begin{align*}
m= & +46.06315^{\prime \prime} \\
& +0.00027723^{\prime \prime}\left(t_{0}-1850\right)+0.000000000115^{\prime \prime}\left(t_{0}-1850\right)^{2} \\
& +\left[0.00027729^{\prime \prime}-0000000000192^{\prime \prime}\left(t_{0}-1850\right)\right]\left(t-t_{0}\right) \tag{252}\\
& -0.000000000623^{\prime \prime}\left(t-t_{0}\right)^{2} \\
n= & +20.04661^{\prime \prime} \\
& -0.00008481^{\prime \prime}\left(t_{0}-1850\right)-0.000000000266^{\prime \prime}\left(t_{0}-1850\right)^{2} \\
& -\left[0.00008494^{\prime \prime}-0.000000000443^{\prime \prime}\left(t_{0}-1850\right)\right]\left(t-t_{0}\right) \tag{253}\\
& +0.000000001435^{\prime \prime}\left(t-t_{0}\right)^{2}
\end{align*}
$$

It is, therefore, evident that when neither $\left(t_{0}-\mathrm{T}\right)$ nor $\left(t-t_{0}\right)$ exceeds a century, all second order terms may be neglected, and the algebraic expressions for m and n may be written as in (273).

Expressions for $\phi^{\prime \prime}$ and $\theta^{\prime \prime}$ have already been found from g, g^{\prime}, r and r^{\prime}, but we have now to deduce them from the coefficients in (234) and (235). For that purpose we shall employ the equations*

$$
\begin{align*}
\phi^{\prime \prime 2} & =\left(\omega_{1}-\omega\right)^{2}+\lambda^{2} \sin ^{2} \frac{1}{2}\left(\omega_{1}+\omega\right) \tag{254}\\
\tan \left(\theta^{\prime \prime}+\frac{1}{2} \psi+\frac{1}{2} \psi_{1}\right) & =\frac{\lambda}{\omega_{1}-\omega} \sin \frac{1}{2}\left(\omega_{1}+\omega\right) \tag{255}
\end{align*}
$$

The first of these equations may be written

$$
\phi^{\prime \prime}=-\left(\omega_{1}-\omega\right)\left\{1+\frac{\lambda^{2} \sin ^{2} \frac{1}{2}\left(\omega_{1}+\omega\right)}{\left(\omega_{1}-\omega\right)^{2}}\right\}^{\frac{1}{2}}
$$

whence, expanding by the binomial theorem

$$
\begin{equation*}
\phi^{\prime \prime}=-\left(\omega_{1}-\omega\right)-\frac{\lambda^{2} \sin ^{2} \frac{1}{2}\left(\omega_{1}+\omega\right)}{2\left(\omega_{1}-\omega\right)}+\text { etc. } \tag{256}
\end{equation*}
$$

If now we put

$$
\begin{align*}
& \frac{1}{2}\left(\omega_{1}+\omega\right)=\omega_{0}+d \omega_{0} \\
& \mathrm{~A}=a-\mathrm{I}^{\prime}-\left(2 \mathrm{I}^{\prime} .+\mathrm{P}^{\prime}\left(\mathrm{Q} \text { tillt } \omega_{0}\right)\left(\mathrm{I}_{0}-\mathrm{T}^{\prime}\right)\right. \tag{257}\\
& \mathrm{B}=b-\mathrm{P}^{\prime}+\frac{!}{2}\left(\left(1-\mathrm{I}^{\prime}\right) \tan \omega_{0}\right.
\end{align*}
$$

we shall have from (248), (273), and (274)

$$
\begin{align*}
d \omega_{0} & =\mathrm{Q}\left(t_{0}-\mathrm{T}\right)+1 \mathrm{Q}\left(t-t_{0}\right)+\text { etc. } \tag{8}\\
\lambda & =\sec \omega_{0} \Lambda\left(t-t_{0}\right)+\sec \omega_{0} \mathrm{~B}\left(t-t_{0}\right)^{2} \\
\omega_{1}-\omega & =\mathrm{Q}\left(t-t_{0}\right)+2 \mathrm{Q}^{\prime}\left(t_{0}-\mathrm{T}\right)\left(t-t_{0}\right)-\left(f-\mathrm{Q}^{\prime}\right)\left(t-t_{0}\right)^{2} \tag{259}
\end{align*}
$$

Whence, with sufficient accuracy

$$
\begin{align*}
\sin \frac{3}{2}\left(\omega_{1}+\omega\right)= & \sin \omega_{0}+d \omega_{0} \cos \omega_{0} \\
\lambda^{2} \sin ^{2} \frac{1}{2}\left(\omega_{1}+\omega\right)= & +\tan ^{2} \omega_{0}\left[A^{2}\left(t+t_{0}\right)^{2}+2 A B\left(t-t_{0}\right)^{3}\right] \tag{260}\\
& -\therefore 2 A^{2} d\left(\omega_{0} \tan \omega_{0}\left(t-t_{0}\right)^{2}\right.
\end{align*}
$$

The substitution of (259) and (260) in (256) gives, after rejecting all terms above the second order with respect to $\left(t_{0}-\mathrm{T}\right)$ and $\left(t-t_{0}\right)$

$$
\begin{align*}
= & -\left[\mathrm{Q}+\tan ^{2} \omega_{0}(a-\mathrm{P})^{2} / 2 \mathrm{Q}\right]\left(t-t_{0}\right) \\
& -\left\{\begin{array}{l}
+2 \mathrm{Q}^{\prime}+\tan \omega_{0}(a-\mathrm{P})^{2} \\
-\tan ^{2} \omega_{0}(a-\mathrm{P})\left(2 \mathrm{P}^{\prime}+\mathrm{PQ} \tan \omega_{0}\right) / \mathrm{Q}
\end{array}\right\}\left(t_{0}-\mathrm{T}\right)\left(t-t_{0}\right) \tag{261}\\
& +\left\{\left(f-\mathrm{Q}^{\prime}\right)-\tan ^{2} \omega_{0}(a-\mathrm{P})\left[b-\mathrm{P}^{\prime}+2 \mathrm{Q}(a-\mathrm{P}) \tan \omega_{0}\right] / \mathrm{Q}\right\}\left(t-t_{0}\right)^{2}
\end{align*}
$$

and as the quantities involved are so related that the coefficient of $\left(t_{0}-T\right)$ is known to be exactly twice that of $\left(t-t_{0}\right)^{2}$, (261) naturally takes the form given in (274).

Reverting now to (255); after eliminating λ by means of the relation*
and putting

$$
\psi-\psi_{1}=\lambda \cos \frac{1}{2}\left(\omega_{1}+\omega\right)
$$

$$
\begin{equation*}
\tan \left(\theta^{\prime \prime}+\frac{1}{2} \psi+\frac{1}{2} \psi_{1}\right)=\tan \left(\theta_{0}^{\prime \prime}+d \theta_{0}^{\prime \prime}\right)=\tan \theta_{6}^{\prime \prime}+d \theta_{0}^{\prime \prime} \sec ^{2} \theta_{0}^{\prime \prime} \tag{262}
\end{equation*}
$$

wo have

$$
\begin{equation*}
\tan \theta_{0}^{\prime \prime}+d \theta_{0}^{\prime \prime} \sec ^{2} \theta_{0}^{\prime \prime}=\frac{\psi-\psi_{1}}{\omega_{1}-\omega} \tan \frac{1}{2}\left(\omega_{1}+\omega\right) \tag{3}
\end{equation*}
$$

But, from (247) and (259)

$$
\frac{\psi-\psi_{1}}{\omega_{1}-\omega}=\frac{a-\mathrm{P}-\left(2 \mathrm{P}^{\prime}+a \mathrm{Q} \tan \omega_{0}\right)\left(t_{0}-\mathrm{T}\right)+\left(l-\mathrm{P}^{\prime}\right)\left(t-t_{0}\right)}{\mathrm{Q}\left\{1+\frac{2 \mathrm{Q}^{\prime}}{\mathrm{Q}}\left(t_{0}-\mathrm{T}\right)-\frac{f-\mathrm{Q}^{\prime}}{\mathrm{Q}}\left(t-t_{0}\right)\right\}}
$$

Whence, with sufficient accuracy, throngh an expansion by the binomial theorem

$$
\begin{align*}
& \begin{array}{c}
\psi-\psi_{1} \\
\omega_{1}-\omega
\end{array}=\frac{a-\mathrm{P}}{\mathrm{Q}}-\left\{\frac{2 \mathrm{P}^{\prime}+a \mathrm{Q} \tan \omega_{0}}{\mathrm{Q}}+\frac{2 \mathrm{Q}^{\prime}(a-\mathrm{P})}{\mathrm{Q}^{2}}\right\}\left(t_{0}-\mathrm{T}\right) \tag{4}\\
&+\left\{\frac{d-\mathrm{P}^{\prime}}{\mathrm{Q}}+\frac{(a-\mathrm{P})\left(f-\mathrm{Q}^{\prime}\right)}{\mathrm{Q}^{2}}\right\}\left(t-t_{0}\right)
\end{align*}
$$

Also, by putting $\frac{1}{2}\left(\omega_{1}+\omega\right)=\omega_{0}+d \omega_{0}$, and taking the value of $d \omega_{0}$ from $(25 S)$

$$
\begin{align*}
\tan \frac{1}{2}\left(\omega_{1}+\omega\right) & =\tan \omega_{n}+1 l \omega_{0} \sec ^{2} \omega_{0} \tag{265}\\
& =\tan \omega_{0}+\sec ^{2} \omega_{0}\left[\mathrm{Q}\left(t_{0}-\mathrm{T}\right)+\frac{1}{2} \mathrm{Q}\left(t-t_{0}\right)\right]
\end{align*}
$$

A comparison of $\left(2 \sigma_{3}\right)$ with the result obtained by multiplying together (264) and (265) shows that, to terms of the first order with respect to $\left(t_{0}-T\right)$ and $\left(t-t_{0}\right)$

$$
\begin{align*}
\tan \theta_{0}^{\prime \prime}= & \tan \omega_{0}(a-\mathrm{P}) / \mathrm{Q} \tag{266}\\
r l \theta_{0}^{\prime \prime} \sec ^{2} \theta_{0}^{\prime \prime}= & -\tan \omega_{0}\left[\left(2 \mathrm{P}^{\prime}+a \mathrm{Q} \tan \omega_{0}\right) / \mathrm{Q}+2 \mathrm{Q}^{\prime}(a-\mathrm{P}) / \mathrm{Q}^{2}\right]\left(t_{0}-\mathrm{T}\right) \\
& +(a-\mathrm{P}) \sec ^{2} \omega_{0}\left(t_{0}-\mathrm{T}\right) \tag{267}\\
& +\tan \omega_{0}\left[\left(b-\mathrm{P}^{\prime}\right) / \mathrm{Q}+(a-\mathrm{P})\left(f-\mathrm{Q}^{\prime}\right) / \mathrm{Q}^{2}\right]\left(t-t_{0}\right) \\
& +\frac{1}{2}(a-\mathrm{P}) \sec ^{2} \omega_{0}\left(t-t_{0}\right)
\end{align*}
$$

As (262) gives

$$
\sigma^{\prime \prime}=\theta_{0}^{\prime \prime}+d \theta_{0}^{\prime \prime}-\frac{1}{2}\left(\psi+\psi_{1}\right)
$$

by taking the values of $\theta_{0}{ }^{\prime \prime}$ and $d \theta_{0}{ }^{\prime \prime}$ from (266) and (267), and remembering that to terms of the first order

$$
\frac{1}{2}\left(\psi+\psi_{1}\right)=\frac{1}{2}(a+\mathrm{P})\left(t-t_{0}\right)
$$

we find

$$
\begin{align*}
\theta^{\prime \prime}=\theta_{0}^{\prime \prime} & -\frac{\tan \omega_{0} \cos ^{2} \theta_{0}^{\prime \prime}}{\mathrm{Q}}\left[2 \mathrm{P}^{\prime}+a \mathrm{Q} \tan \omega_{0}+2 \mathrm{Q}^{\prime}(a-\mathrm{P}) / \mathrm{Q}\right]\left(t_{0}-\mathrm{T}\right) \\
& +(a-\mathrm{P}) \sec ^{2} \omega_{0} \cos ^{2} \theta_{0}^{\prime \prime}\left(t_{0}-\mathrm{T}\right) \tag{268}\\
& +\frac{\tan \omega_{0} \cos ^{2} \theta_{0}^{\prime \prime}}{\mathrm{Q}}\left[b-\mathrm{P}^{\prime}+(a-\mathrm{P})\left(f-\mathrm{Q}^{\prime}\right) / \mathrm{Q}\right]\left(t-t_{0}\right) \\
& +\frac{1}{2}\left[(a-\mathrm{P}) \sec ^{2} \omega_{0} \cos ^{2} \theta_{0}^{\prime \prime}-(1+\mathrm{P})\right]\left(t-t_{0}\right)
\end{align*}
$$

If we had not transformed (255), but had developed

$$
\frac{\lambda}{\omega_{1}-\omega} \sin \frac{1}{2}\left(\omega_{1}+\omega\right)
$$

instead of

$$
\frac{\psi-\psi_{1}}{\omega_{1}-\omega} \tan \frac{1}{2}\left(\omega_{1}+\omega\right)
$$

we would have obtained the slightly more complicated expression

$$
\begin{align*}
\theta^{\prime \prime}= & \theta_{0}^{\prime \prime}-\frac{\tan \omega_{0} \cos ^{2} \theta_{0}^{\prime \prime}}{\mathrm{Q}}\left[2 \mathrm{P}^{\prime}+\mathrm{PQ} \tan \omega_{0}+2 \mathrm{Q}^{\prime}(a-\mathrm{P}) / \mathrm{Q}\right]\left(t_{0}-\mathrm{T}\right) \\
& +\cos ^{2} \theta_{0}^{\prime \prime}(a-\mathrm{P})\left(t_{0}-\mathrm{T}\right) \tag{269}\\
& +\frac{\tan \omega_{0} \cos ^{2} \theta_{0}^{\prime \prime}}{\mathrm{Q}}\left[b-\mathrm{P}^{\prime}+\frac{1}{2} \mathrm{Q}(a-\mathrm{P}) \tan \omega_{0}+(a-\mathrm{P})\left(f-\mathrm{Q}^{\prime}\right) / \mathrm{Q}\right]\left(t-t_{0}\right) \\
& +\frac{1}{2}\left[(a-\mathrm{P}) \cos ^{2} \theta_{0}^{\prime \prime}-(a+\mathrm{P})\right]\left(t-t_{0}\right)
\end{align*}
$$

If M is the longitude of the ascending note of the mean ecliptic at the time $t+d t$, reckoned from the equinox of date t, upon the ecliptic of date t, then

$$
\mathrm{M}=\theta^{\prime \prime}+\frac{d 0^{\prime \prime}}{d t} t+\psi_{1}
$$

But

$$
\begin{equation*}
\theta^{\prime \prime}=\theta_{0}^{\prime \prime}+\frac{d \theta_{0}^{\prime \prime}}{d t} t \tag{270}
\end{equation*}
$$

and therefore, with sufficient accuracy

$$
\begin{equation*}
M=\theta_{0}^{\prime \prime}+2 \frac{d \theta_{0}^{\prime \prime}}{d t} t+\psi_{1} \tag{271}
\end{equation*}
$$

As the relation of M to $\theta^{\prime \prime}$ is the same as that of ω_{1} to ω, when the date of the equinox and ecliptic is changed from T to t_{0} in (270) and (271), we must evidently have

$$
\begin{align*}
& \theta^{\prime \prime}=\theta_{0}^{\prime \prime}+\frac{d \theta_{0}^{\prime \prime}}{d t}\left[2\left(t_{0}-\mathrm{T}\right)+\left(t-t_{0}\right)\right]+\frac{d \psi_{1}}{d t}\left(t_{0}-\mathrm{T}\right) \tag{272}\\
& \mathrm{M}=\theta_{0}^{\prime \prime}+\left\{2 \frac{d \theta_{0}^{\prime \prime}}{d t}+\frac{d \psi_{1}}{d t}\right\}\left[\left(t_{0}-\mathrm{T}\right)+\left(t-t_{0}\right)\right]
\end{align*}
$$

and these are the forms adopted in (274); the values of $\theta_{0}{ }^{\prime \prime}$ and $d \theta_{0}{ }^{\prime \prime} / d t$ being taken from (266) and (268).

$$
\begin{align*}
& \psi=a\left[\mathrm{I}-\mathrm{Q} \tan \omega_{0}\left(t_{0}-\mathrm{T}\right)\right]\left(t-t_{0}\right)+b\left(t-t_{0}\right)^{2}+\Psi \\
& \omega=\omega_{0}+\mathrm{Q}\left(t_{0}-\mathrm{T}\right)+\mathrm{Q}^{\prime}\left(t_{0}-\mathrm{T}^{\prime}\right)^{2}+f\left(t-t_{0}\right)^{2}+\Omega \\
& \lambda=+\sec \omega_{0}\left[\pi-\mathrm{P}-\left(2 \mathrm{P}^{\prime}+\mathrm{PQ} \text { tan } \omega_{0}\right)\left(t_{0}-\mathrm{T}\right)\right]\left(t-t_{0}\right) \\
& +\sec \omega_{0}\left[b-\mathrm{P}^{\prime}+\frac{1}{2} \mathrm{Q}(a-\mathrm{P}) \tan \omega_{0}\right]\left(t-t_{0}\right)^{2} \tag{273}\\
& m=+a \cos \omega_{0}-(a-\mathrm{P}) \sec \omega_{0} \\
& +\left\{\left(2 \mathrm{P}^{\prime}+\mathrm{PQ} \tan \omega_{0}\right) \sec \omega_{0}-2 a \mathrm{Q} \sin \omega_{0}\right\}\left\{\left(t_{0}-\mathrm{T}\right)+\left(t-t_{0}\right)\right\} \\
& n=a \sin \omega_{0}+2 b \sin \omega_{0}\left[\left(t_{0}-T\right)+\left(t-t_{0}\right)\right] \\
& \psi_{1}=\left[\mathrm{P}+2 \mathrm{P}^{\prime}\left(t_{0}-\mathrm{T}\right)\right]\left(t-t_{0}\right)+\mathrm{P}^{\prime}\left(t-t_{0}\right)^{2}+\Psi \\
& \omega_{1}=\omega_{0}+\mathrm{Q}\left(t_{0}-\mathrm{T}\right)+\mathrm{Q}^{\prime}\left(t_{0}-\mathrm{T}^{2}\right)^{2} \\
& +\left[\mathrm{Q}+2 \mathrm{Q}^{\prime}\left(t_{0}-\mathrm{T}^{\prime}\right)\right]\left(t-t_{0}\right)+\mathrm{Q}^{\prime}\left(t-t_{0}\right)^{2}+\Omega \\
& \phi^{\prime \prime}=-\left[\mathrm{Q}+\tan ^{2} \omega_{0}(a-\mathrm{P})^{2} / 2 \mathrm{Q}\right]\left(t-t_{0}\right) \\
& +\left\{\left(f-\mathrm{Q}^{\prime}\right)-\tan ^{2} \omega_{0}(a-\mathrm{P})\left[b-\mathrm{P}^{\prime}+{ }_{2}^{1} \mathrm{Q}(a-\mathrm{P}) \tan \omega_{0}\right] / \mathrm{Q}\right\}\left\{2\left(t_{0}-\mathrm{T}\right)\right. \\
& \left.\left(t-t_{0}\right)+\left(t-t_{0}\right)^{2}\right\} \tag{274}\\
& 0_{0}{ }^{\prime \prime}=\arctan \left[\tan \omega_{0}(a-\mathrm{P}) / \mathrm{Q}\right] \\
& \Lambda=+\frac{\tan \omega_{0} \cos ^{2} \theta_{0}^{\prime \prime}}{\mathrm{Q}}\left[b-\mathrm{P}^{\prime}+(11-\mathrm{P})\left(f-\mathrm{Q}^{\prime}\right) / \mathrm{Q}\right] \\
& +\frac{1}{2}(a-\mathrm{P}) \sec ^{2} \omega_{0} \cos ^{2} \theta_{0}{ }^{\prime \prime}-\frac{1}{2}(u+\mathrm{P}) \\
& \theta^{\prime \prime}=\theta_{0}^{\prime \prime}+\mathrm{A}\left[2\left(t_{0}-\mathrm{T}\right)-\left(t-t_{0}\right)\right]+\mathrm{P}\left(t_{0}-\mathrm{T}\right) \\
& \mathrm{M}=\theta_{0}^{\prime \prime}+(2 \Lambda+\mathrm{P})\left[\left(t_{0}-\mathrm{T}\right)+\left(t-t_{0}\right)\right]
\end{align*}
$$

By means of the groups of formule (273) and (274) the entire system of quantities used in computing precession can be readily found for any desired equinox and ecliptic when the expressions for ψ, ψ_{1}, ω, and ω_{1} are known for a given equinox and ecliptic. With respect to the notation, it may be well to remark that $\psi, \omega, \omega_{1}, \phi^{\prime \prime}$, and $\theta^{\prime \prime}$ are the quantities which Dr. Peters designated $\psi^{\prime}, \theta^{\prime}, \theta_{1}, \pi^{\prime \prime}$, and Π. Further, ' T ' is the epoch for which the constants in the formulæ (234) and (235) were originally computed, while t_{0} is the date of the new equinox and ecliptic to which the precession is to be referred, and t is the date for which the various quantities are required. In (273) and (274) all the angles and circular functions are expressed in parts of radins, and to convert them into seconds of arc it yet remains to introduce the factor are $1^{\prime \prime}$ wherever necessary.

By substituting the coefficients from (241) in the formulx (273) and (274), all the following numerical expressions were obtained, except those for $\phi^{\prime \prime}, \theta^{\prime \prime}$, and M , which are from (227).

$$
\begin{align*}
& \psi=\left[50.35715^{\prime \prime}+0.00004943^{\prime \prime}\left(t_{0}-1850\right)\right]\left(t-t_{0}\right) \\
& -0.00010669^{\prime \prime}\left(t-t_{0}\right)^{2}+\Psi \\
& \omega=23^{\circ} 27^{\prime} 3147^{\prime \prime}-0.46654^{\prime \prime}\left(t_{0}-1850\right) \\
& -0.00000073^{\prime \prime}\left(t_{0}-1850\right)^{2}+0.00000641^{\prime \prime}\left(t-t_{0}\right)^{2}+\Omega \\
& \lambda=\left[0.13183^{\prime \prime}-0.00018655^{\prime \prime}\left(t_{0}-1850\right)\right]\left(t-t_{0}\right) \tag{275}\\
& -0.00023652^{\prime \prime}\left(t-t_{0}\right)^{2} \\
& m=46.06315^{\prime \prime}+0.00027723^{\prime \prime}\left[\left(t_{0}-1850\right)+\left(t-t_{0}\right)\right] \\
& n=20.0 .4661^{\prime \prime}-0.00008+94^{\prime \prime}\left[\left(t_{0}-1850\right)+\left(t-t_{0}\right)\right] \\
& \psi_{1}=\left[50.23622^{\prime \prime}+0.00022044^{\prime \prime}\left(t_{0}-1850\right)\right]\left(t-t_{0}\right) \\
& +0.000 \text { IIO } 22^{\prime \prime}\left(t-t_{0}\right)^{2}+\Psi \\
& \omega_{1}=23^{\circ} 27^{\prime} 3147^{\prime \prime}-0.46654^{\prime \prime}\left(t_{0}-1850\right)-0.00000073^{\prime \prime}\left(t_{0}-1850\right)^{2} . \\
& -\left[0.46654^{\prime \prime}+0.00000146^{\prime \prime}\left(t_{0}-1850\right)\right]\left(t-t_{0}\right) \\
& \text {-- } 0.00000073^{\prime \prime}\left(t-t_{0}\right)^{2}+\Omega \tag{276}\\
& \phi^{\prime \prime}=\left[0.46949^{\prime \prime}-0.00000689^{\prime \prime}\left(t_{0}-1850\right)\right]\left(t-t_{0}\right) \\
& -0.00000345^{\prime \prime}\left(t-t_{0}\right)^{2} \\
& \theta^{\prime \prime}={ }^{17} 73^{\circ} 34^{\prime} 55^{\prime \prime}+32.655^{\prime \prime}\left(t_{0}-1850\right)-8.791^{\prime \prime}\left(t-t_{0}\right) \\
& M=173^{\circ} 34^{\prime} 55^{\prime \prime}+32.655^{\prime \prime}\left[\left(t_{0}-1850\right)+\left(t-t_{0}\right)\right]
\end{align*}
$$

In Section 25 we shall see that the outcome of the present investigation respecting precession depends somewhat upon the value adopted for the flattening of the Earth, but formula (227), (241), (275), and (276) are very nearly correct, and it is desirable that ready means should be provided for comparing them with the results obtained by other astronomers. T'o that end the coefficients of the formule of La Place,* Bessel, \dagger Struve and Peters. \ddagger Mansen, \oint Le Verrier, $\|$ and the present writer, are collected in

[^12]Table VII, where they are all referred to the equinox and ecliptic of 1800 ; such of the formule as were referred by their authors to equinoxes and ecliptics other than those of I800 having been reduced to that epoch by means of the formula (273) and (274), without the introduction of any extraneous factors. Respecting Hasses's formule, it should be remarked that the values of ω_{0} and P given in Table VII differ slightly from those in his Tables du Soleil, p. 5 ; but the P agrees with that in his Tables de la Lune, p. 16. The dates of publication are, for the article in the Astronomische Nachrichten, September, 1852 ; for the solar tables, 1853 ; and for the lunar tables, 1857.

Table VII.- Values given by various Authors for the Cocfficients in Formule (234) and (235) ; suid Values being all referred to the Equinox and Ecliptic of 1800.

Author.	La Place.	Bessel.	Strive and Peters.	Havisen.	Le V'errier.	Formula (241)
Date.	1802.	1826.	$1 S_{4} 1$.	1852.	1S56.	1889.
$\begin{gathered} a \\ 1000 b \end{gathered}$	$\begin{aligned} & +50.29034^{\prime \prime} \\ & -0.12179 \end{aligned}$	$\begin{aligned} & +50.37826^{\prime \prime} \\ & -0.12179 \end{aligned}$	$\begin{aligned} & +50.3798 \\ & -0.1084 \end{aligned}$	$\begin{aligned} & +50.35593^{\prime \prime} \\ & -0.10674 \end{aligned}$	$\begin{aligned} & +50 \cdot 36 S 88^{\prime \prime} \\ & -\quad 0 \cdot 10881 \end{aligned}$	$\begin{aligned} & +50.35468^{\prime \prime} \\ & -0.10669 \end{aligned}$
$\begin{gathered} \omega_{0} \\ 1000 f \end{gathered}$	$\begin{aligned} & 23^{\circ} 27^{\prime} 51 \cdot 95^{\prime \prime} \\ & +\quad 0.0098_{4} \end{aligned}$	$\begin{gathered} 23^{\circ} 27^{\prime} 53^{\cdot} 81^{\prime \prime} \\ +\quad 0.0098+ \end{gathered}$	$\begin{aligned} & 23^{\circ} 27^{\prime} 54^{2} 22^{\prime \prime} \\ & +\quad 0.00735 \end{aligned}$	$\begin{aligned} & 23^{\circ} 27^{\prime} 54 \cdot S 0^{\prime \prime} \\ & +\quad 0.00705 \end{aligned}$	$\begin{aligned} & 23^{\circ} 27^{\prime} 55^{.61 / \prime} \\ & +0.00719 \end{aligned}$	$\begin{aligned} & 23^{\circ} 27^{\prime} 54.80^{\prime \prime} \\ & +0.00641 \end{aligned}$
$\begin{gathered} \mathrm{P} \\ 1000 \mathrm{P}^{\prime} \end{gathered}$	$\begin{aligned} & +50.1113^{\prime \prime} \\ & +0.12215 \end{aligned}$	$\begin{aligned} & +50.22350^{\prime \prime} \\ & +0.12215 \end{aligned}$	$\begin{aligned} & +50.24111 \\ & +0.1134 \end{aligned}$	$\begin{aligned} & +50.22295^{\prime \prime} \\ & +\quad 0.11207 \end{aligned}$	$\begin{aligned} & +50.22443^{\prime \prime} \\ & +\quad 0.11289 \end{aligned}$	$\begin{aligned} & +50.22520^{\prime \prime} \\ & +\quad 0.11022 \end{aligned}$
$\begin{gathered} Q \\ 1000 Q^{\prime} \end{gathered}$	$\begin{aligned} & -0.52141^{\prime \prime} \\ & -0.00272^{\prime \prime} \end{aligned}$	$\begin{aligned} & -0.48395^{\prime \prime} \\ & -0.0027^{2} \end{aligned}$	$\begin{aligned} & -0.4738 \% \\ & -0.0014 \end{aligned}$	$\begin{aligned} & -0.46770^{\prime \prime} \\ & -0.00140 \end{aligned}$	$\begin{aligned} & -0.47551^{\prime \prime} \\ & -0.00149 \end{aligned}$	$\begin{aligned} & -0.46647^{\prime \prime} \\ & -0.00073 \end{aligned}$

As Dr. Peters's formule for nutation have been more used than any others, it will suffice to compare our own with them. Accordingly, formule (242) and (243) have been reduced to the epoch isoo, and are given below, side by side with Dr: Peti:rs's more elaborate expressions.* When extreme accuracy is desired, some of his small terms may advantageously be added to our formulæ.

$$
\begin{aligned}
& \text { Formula (242) } \\
& \Psi=-17.2295^{\prime \prime} \sin \delta \\
& +0.2070 \sin 28 \\
& -0.2042 \sin 2 \varangle \\
& +0.0686 \sin \mathrm{~A}_{6} \\
& \text { Dr. Peters. } \\
& -17.2405^{\prime \prime} \sin 8 \\
& +0.2073 \sin 28 \\
& -0.2041 \sin 2 \mathbb{} \\
& +0.0677 \sin \left(\varangle-\Gamma^{\prime}\right) \\
& -0.0339 \sin (2 \text { § }-8) \\
& +00125 \sin (2 \odot-8) \\
& -00261 \sin \left(3 \mathbb{C}-\Gamma^{\prime}\right) \\
& +0.0115 \sin \left(\varangle+\Gamma^{\prime}\right) \\
& +00150 \sin \left(\varangle-2 \odot+\Gamma^{\prime}\right) \\
& +0.0058 \sin \left(\Omega+8-\Gamma^{\prime}\right) \\
& +0.0057 \sin \left(\mathbb{}\left(\mathbb{}-\delta-\Gamma^{\prime}\right)\right. \\
& +0.0020 \sin \left(\mathbb{}\left(\mathbb{\sigma}-\delta+\Gamma^{\prime}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& +0.0044 \sin \left(2 \Gamma^{\prime}-8\right) \\
& +0.0061 \sin (2 \mathbb{-}-2 \odot) \\
& -0.0052 \sin \left(3 \mathbb{C}-2 \odot+\Gamma^{\prime}\right) \quad \text { (277) } \\
& +0.0053 \sin \left(2 \odot-2 \Gamma^{\prime}\right) \quad \text { cont'd. } \\
& +0.0026 \cos \Gamma^{\prime} \\
& +0.0020 \sin 2 \Gamma^{\prime} \\
& +0.0025 \sin \left(\mathbb{C}+2 \odot-\Gamma^{\prime}\right) \\
& +0.0028 \sin \left(2 \text { § }-2 \Gamma^{\prime}\right) \\
& +0.0024 \sin (2 \mathbb{}(28) \\
& -0.0024 \sin (2 \odot-28) \\
& -0.0028 \sin \left(4 \mathbb{}\left(\mathbb{}-2 \Gamma^{\prime}\right)\right. \\
& -0.0033 \sin (4 \mathbb{C}-2 \odot) \\
& -12694 \sin 2 \odot \\
& +01279 \sin (\odot-\Gamma) \\
& -0.0213 \sin (\odot+\Gamma) \\
& -0.0058 \sin (3 \odot-\Gamma) \\
& -0.0005 \sin (2 \odot-2 \Gamma) \\
& \text { Dr. Peters. } \\
& \Omega=+9^{.215} 8^{\prime \prime} \cos 8 \\
& -0.0898 \cos 28 \\
& +0.0886 \cos 2 \mathbb{} \\
& +9.2231^{\prime \prime} \cos 8 \\
& -0.0897 \cos 28 \\
& +0.0886 \cos 2 \mathbb{} \\
& +0.0181 \cos (2 \mathbb{}(-8) \\
& -0.0067 \cos (2 \odot-8) \\
& + \text { OOII } 3 \cos \left(3 \mathbb{C}-\Gamma^{\prime}\right) \text {. } \\
& -0.0050 \cos \left(\mathbb{C}+\Gamma^{\prime}\right) \\
& -0.003 \text { I } \cos \left(\mathbb{C}+8-\Gamma^{\prime}\right) \\
& +0.0030 \cos \left(\mathbb{C}-8-\Gamma^{\prime}\right) \\
& -0.0010 \cos \left(\mathbb{}\left(\mathbb{-} \delta+\Gamma^{\prime}\right)\right. \tag{278}\\
& -0.0024 \cos \left(2 \Gamma^{\prime}-8\right) \\
& +0.0023 \cos \left(3 \varangle-2 \odot+\Gamma^{\prime}\right) \\
& +0.0023 \sin l^{\prime \prime} \\
& -0.0008 \cos 2 \Gamma^{\prime} \\
& -0.0011 \cos \left(\varsigma+2 \odot-\Gamma^{\prime}\right) \\
& +0.0012 \cos \left(4 \mathbb{C}-2 \Gamma^{\prime}\right) \\
& +0.0014 \cos (45-2 \odot) \\
& +0.5493^{\prime \prime} \cos 2 \odot \\
& +0.5510 \cos 2 \odot \\
& +0.0093 \cos (\odot+\Gamma) \\
& +0.0027 \cos (3 \odot-\Gamma)
\end{align*}
$$

The differential formulæ given above will suffice for computing the precession in all ordinary cases; but if the general formulæ should be required, their computation may be greatly facilitated by using the convenient expressions given by Professor Stockwell for the constants which determine the secular inequalities of the nodes and inclinations of the orbits of the eight principal planets of the solar system.*

24.-THE DENSITY, FLattening, ani moments Of inertia of the barthe

In dealing with the equations (291), and in discussing the law of density of the interior of the Earth, we shall need the best attainable values of the larth's mean density, its surface density, and its precessional moment of inertia.

The following is beliered to be a tolerably eomplete list of the more important determinations of the Earth's mean density hitherto published:
1778. Maskelve and Huttos, from measurments of the attraction of the plumb line by the mountain Sche- hallien, in Scotland. $\left(290\right.$, p. $7 S_{3}$.) $4^{1 / 2}$
1798. Cavendisn, from the attraction of two leaden balls, each weighing $348^{\circ}+$ pounds, the attraction being measured by a torsion balance. (2So, p. 522.) $5 \cdot 48 \pm 0.39$ISif. Playfair, from his own determination of the mass of schehallien, combined with Minkelive andHt'rTox's determination of its attractive force. ($302, \mathrm{p} .376$.)$4 \cdot 713$
18ı2. HUTTON, from Maskelvife's measurements of the attractive force of Shehallien, combued with l'as: FAIR's data for its density. (291, p. 6 + .) 5
1823. CarliNi, from pendulum observotions made on M1. Cenis, and at liorlenux at the level of the sea. (279,p. 40.)$+39$
1837. ReICH, from the attraction of a leaden ball, measured by a torsion balance. (271, p. 98.) 5.438 ± 0.023
1840. Giulio, from Carlisis's pendulum observations on Mt. Cenis, after correcting both Carlisis's theory and his adopted length of the pendulum at Bordeaux. (287, p. $3 S_{4}$) 4.95
1842. SAgey, from the pendulum observations made by Bouguer and la Condanine in Peru, on Chimborazo and at the level of the sea, in 1737-1740. (272, parte 2nda, p. 125.) $4 \cdot 62$
1842. Baily, from the attraction of two spheres of lead, eacli weighing 380.5 pounds, the attraction being meas- ured by a torsion balance. (271, p. ccxlvij.) 5.675 ± 0.004
1851. ReICri, from a rediscussion of the experiments which he made in 1837 . (310, p. 389 .) $5.4 \mathrm{~S}_{4} \pm 0.020$
1851. Reicir, from the attraction of a leaden ball, measured by a torsion balance during the years 1847-1849 and 1850. (310, p. 418 .) $5 \cdot 5^{83} \pm 0.015$
1856. James and Clarke, from the attraction of the plumb line at Arthur's Seat, Scotland. (282, p. 606.). 5.316 ± 0.054
1856. AIRr, from his pendulum experiments in the Harton Colliery, England. (270, pp. 342 and 355.) 6.566 ± 0.018
1856. HaUGiltox, from AIRy's pendulum experiments in the Harton Colliery. (2SS, p. 5 I.) $5 \cdot 480$
1S65. Pechmasi; from deviations of the plumb line in the Alps, $4.7,5 \cdot 32$, and 6.13 ; the mean of which is (14, T. 2, p. 380.) $5 \cdot 3 \mathrm{~S}$
1878. Cornu and Baille, from measurements, with a torsion balance, of the attraction of a mass of mercury weighing about 26 pounds. (284, p. 699.) $5 \cdot 56$
1878. CORNU and Ballefe, from Bally's experiments, after correcting a systematic error: (2S ${ }_{4}$, p. 702.) 5559
1878. Poynting, by weighing with a delicate balance the attraction of a sphere of lead having a mass of 340 pounds. $(30 j, \mathrm{p}$. IS.) 5.69 ± 0.15
1881. Mendeshair, from pendulum observations at Tokio, and upon the summit of Fujiyama. in Japan. (299, p. 12t, and 300, p. 103.) $5 \cdot 77$
1883. Sterneck, from pendulum experiments made in the mines at Pribram, Bohemia. (314, p. 91. Mr.Sterneck has made similar experiments in other mines, with very anomalous results. For a reviewof them, see 308, pp. 234-237.)$5 \cdot 77$
1883. Vox Jolly, from the change in the relative weight of two spherical bottles of mercury, each having a mass of IIO pounds, when they were compared, ist, with both bottles close to the scale pans, and, 2 d , with one bottle close to its pan, and the other suspended 68.9 feet lower down. (293, p.22.) . . .715 pounds. (322, p. 141.)5.579 ± 0.012

In several instances two or more of the abore results rest upon a single set of experiments, the reductions having been made by different methods, and in such cases we have only to consider the one which seems most trustworthy. After the applica-
tion of that precept, the various results may be classified according to the methods of observation, as follows:
1.-Results from the attractions of mountains, measured by the deviations of the plumb line.

$$
\begin{equation*}
\text { i8if. Maskelyne, Hutton, and Playfair } 4713 \tag{279}
\end{equation*}
$$

1856. James and Clarke 5316
1857. Pechmann 538

Arithmetical mean $5^{1} 136$
2.-Results from the attractions of known masses of metal, measured either by the torsion balance or by the pendulum.

$$
\begin{aligned}
& \text { 1798. Cavendish } 548 \\
& \text { 1851. Reicir, from his experiments in } 1837 \text {. . . . } 5484 \\
& \text { 1851. Reicir, from his experiments made in 1847-50 } 5.583 \\
& \text { 1878. Cornu and Baille } 55^{6} \\
& \text { 1878. Baily, cortected by Cornu and Baille . . . } 5559 \\
& \text { 1889. Wilsing } 5579 \\
& \text { Arithmetical mean } 5541
\end{aligned}
$$

3.-Results from comparisons of pendulum observations made at different distances from the center of the Earth; namely, at the sea-level and upon mountains, or at the surface of the Earth and down in mines.
i840. Carlini, corrected by Giulio 4.95
1842. Bouguer, La Conidame, and Saigiey 4.62
1856. AIry $6 \cdot 566$
1881. Mendenhall 5.77
1883. Sterneck $5 \cdot 77$
Arithmetical mean 5.535

4.-Results from weighings made with delicate balances of the usual form.

$$
\begin{array}{r}
\text { 1878. Poynting } \tag{2}\\
\text { 1883. Von Jolly }
\end{array} \text {. } 5669
$$

The arithmetical mean of the 16 values of the density of the Earth given in (279), (280), (281), and (282) is 5482 , but that attributes too much weight to the discordant values in (279) and (28 r). On account of our utter ignorance respecting the internal constitution of the Earth, it will be safer to base our conclusions solely upon experiments of the second and fourtly kinds; and if we take the arithmetical mean of the eight values in (280) and (282), we shall have

Mean density of the Earth $=5.578 \pm 0.019$

The last four values of (280) are muquestionably the most trustwortliy of the whole series, and the arithmetical mean of them alone gives

$$
\text { Mean density of the Earth }=5.570 \pm 0.004
$$

Probably it will be best to take the mean of the eight values in (280) and (282), giving half weight to the first two in (280) and to those in (282). In that way we find

$$
\begin{equation*}
\text { Mean density of the Earth }=5.576 \pm 0016 \tag{283}
\end{equation*}
$$

which will be adopted. It is scarcely necessary to add that the mit of density here employed is that of distilled water at a temperature of $39^{\circ} 2^{\circ}$ Fahrenheit.

As a basis for estimating the surface density of the Earth, we have the following numbers:
1811. Playfair's data give for the mean density of Schehallien, $9933 \times 4.713-17804(302, \mathrm{pp} .374$ and 376) 2.63
1823. CarliNi, from the lithological constitution of Mt. Cenis, estimated its mean density to be (279, p. 39) . . 2.66
1852. Plana found, from Carlini's pendulum experiments, for the mean density of the rocks upon which the
plateau of Itt. Cenis rests (301, p. 187) . 2.71
1856. Jamfs and Clarke found for the mean density of Arthur's Seat, Scotland (282, p. 603) 2775
1856. AIRy's data give for the crust in the neighborhood of Harton Colliery, England (270, p. 342) 2.53
1882. Ster.ieck found for the mean density of the crust over the Pribram mines, Bohemia (313, p. II 8) . . . 2.75
1889. F. W. Clarke found for the mean density of the outer ten miles of the Earth's crust 240

The thanks of the present writer are due to Professor Clarke for lis estimate, which was kindly commmicated in the appended letter:

Washington, D. C., November if, 1889.

Dear Prof. Markness:

In my estimates relative to the abundance of the chemical elements, I have assumed, for definiteness, a layer of the Earth's crust ten miles thick below sealevel. The volume of this, including the ocean and the continents above sea-level, is 1935000000 cubic miles, of which 1633000000 is solid, and 302000000 sea. Hence, by volume, in round numbers we have 85 per cent. rock and 15 per cent. water. The density of the ocean is a trifle under $r^{\circ} 0_{3}$. The figure $1 \circ O_{3}$, then, may be taken as near enough for practical purposes.

The density of the solid crust is less easy to determine. The greater part of that crust is probably made up of plutonic rocks; and the average specific gravity of about 200 of these, representing a wide range of localities and varieties, is 2716 . In the crust are both heavier and lighter inclusions, and at its surface we have bodies of rather less heavy sedimentary rocks, which range down to a specific gravity of $2 \cdot 5$, or lower. Probably 2.60 or. 2.65 would be near enough for the whole solid mass.

Now, taking 85 per cent. solid and I_{5} per cent. liquid, putting the latter at $\mathrm{r}^{\circ} \mathrm{O}_{3}$ density, we get the following data for the mean density of the whole mass:

> | With density of solid crust 2.5 . |
| :--- |
| With density of solid crust 2.6 . |
| Wing |
| With density of solid crust 2.7645 |
| W. |
| 2.4495 |

Total difference, $0^{\circ} 17$, or about 7.5 per cent. of the lowest value. Probably 2.4, with an uncertainty of 4 per cent., may be assumed as approximately correct.

Yours, truly,

F. W. Clarke.

The arithmetical mean of the first six of the above estimates is 2.67 , and if we accept that as the mean density of the solid part of the Earth's crust, and assume, in accordance with Professor Clarke's figures, that o.844 of the crust is solid and O. 156 liquid, then the mean density of the crust will be

$$
2.67 \times 0.844+1.03 \times 0.156=2.41
$$

which agrees closely with Professor Clarke's own estimate.
But we must not forget the many facts which seem to indicate that the Earth's crust is approximately in a state of hydrostatic equilibrium, and lead to the conclusion that it is more dense beneath the ocean than in the continents.* If such is really the case the comparative lightness of the waters of the sea must be at least partially compensated for by the increased density of the strata upon which they rest, and the average surface density of the Earth must exceed Professor Clarke's estimate. Our present knowledge is too meager to warrant any very definite conclusion, but as the continental surface density probably lies between 2.40 and 2.72 , we may take the mean of these numbers and attribute to it a probable error equal to half their difference. In that way we find

$$
\begin{equation*}
\text { Surface density of the Earth }=2.56 \pm 0.16 \tag{284}
\end{equation*}
$$

The phenomena of precession and nutation, and certain perturbations of the Moon, enable us to determine two independent functions of the Earth's moments of inertia, from the first of which the Earth's flattening could be found if the distribution of density in its interior were known, while from the second it can be found without that knowledge. In employing the first function Le Gendre's law of the distribution of density is usually assumed, and we have now to examine the process thus arising, and the result to which it leads.

If we put A, B, and C for the three principal moments of inertia of the Earth, A being the least and C the greatest, then the precessional moment of inertia will be $(2 \mathrm{C}-\mathrm{A}-\mathrm{B}) / 2 \mathrm{C}$. Some writers have called this "the terrestrial constant of precession and mutation," or even "the precession constant," but that is certainly. objectionable, because these words have long been employed to designate the ammal motion of the vermal equinox, and their use for any other purpose can only lead to needless confusion. Serret gives \dagger

$$
\frac{2 \mathrm{C}-\mathrm{A}-\mathrm{B}}{2 \mathrm{C}}=\frac{2 n}{3 m^{2}} x
$$

where m and n are respectively the sidereal angular velocities of the Earth about the

Sim, and about its own axis. Aecordingly, with the Julian year as unit of time, and the value of m from page 78

$$
\begin{gather*}
n / m=366.249983 \quad m=6.28307594 \\
\frac{2 \mathrm{C}-\mathrm{A}-\mathrm{B}}{{ }_{2} \mathrm{C}}=38.861007 \pi \tag{285}
\end{gather*}
$$

or, if A and B are assumed to be equal, and x is expressed in seconds of are

$$
\begin{equation*}
\frac{C-A}{C}=0.00018840348 \pi \tag{286}
\end{equation*}
$$

From (230), after substituting the numerical values of its A, B, C, and $\cos \omega_{0}$ for the epoch 1850°

$$
\begin{equation*}
x=+1.0896401 \underset{2}{2}-4.071361 \text { 5気 } \tag{287}
\end{equation*}
$$

and by sulbstituting (287) in (286)

$$
\begin{equation*}
\frac{\mathrm{C}-\mathrm{A}}{\mathrm{C}}=0.0002052920 \text { ? }-0.0007670587 \text { d } \tag{288}
\end{equation*}
$$

Formula (286) is perfectly general, but (287) and (288) apply rigorously only to the epoch 1850 , and consequently ${ }_{2}^{2}$ and must be reduced to that epoch before being employed in them.

From (231), $x=17.34866^{\prime \prime}$, whence by (286)

$$
\begin{equation*}
\frac{\mathrm{C}-\mathrm{A}}{\mathrm{C}}=0.00326855=\frac{1}{305.95} \tag{289}
\end{equation*}
$$

For convenience of reference, some of the values which other investigators have found for u and $(\mathrm{C}-\mathrm{A}) / \mathrm{C}$ are given in Table VIII. That attributed to La Place is what lie himself computed, but his values of the precession and mutation constants are respectively $50^{\circ} 261^{\prime \prime}$ and $10.06^{\prime \prime}$ when reduced to $1850^{\circ} 0$, and their substitution in (288) gives a somewhat greater result, namely $(C-A) / C=0.00260161^{\prime \prime}$. Bessel

Table ViII.- T'alues of x and ($\mathrm{C}-\mathrm{A}$)/U according to various Authors.

Wate.	Author.	κ	$(C-A): C$
1799	La Place (7, T. 2, liv. 5, chap. i, ?\% 13-14)		$0.00259662=1: 385 \cdot 12$
1818	BESSLEL ($1,1.130)$		$00292450=1: 34193$
1830		$15 \cdot 312$	-003+5016 1: $2 \mathrm{~S}_{9} \cdot \mathrm{~S}_{4}$
18.11	C. A. İ. Petliks (109, P. IU1)	$17 \cdot 362$	-00327112=1:305\%1
1856	Le Verrier (8, T. 2, 1). 174)	17.323	-003 $26377=1: 306 \cdot 39$
1859	Serret (83, p. 323)	17.378	-00327413 = 1:30542
1862	IIansen (55, p. 472)		.003272 $27.305 \cdot 62$
1889	Formulx (231) and (289)	$17 \cdot 349$	$0.00326855=1: 305.95$

did not explain how he obtained the result quoted in Table VIII from the Fundamenta. The precession and mutation constants employed in that work are respectively $50.31614^{\prime \prime}$ and $9.6489^{\prime \prime}$, for the epoch of $1850^{\circ} 0$, and their substitution in (288) would give $(\mathrm{C}-\mathrm{A}) / \mathrm{C}=0.00292828$. The Tabule Regiomontanæ contains neither \varkappa nor ($\mathrm{C}-\mathrm{A}) / \mathrm{C}$, but its values of the precession and nutation constants are respectively $50^{\circ} 35^{1} 36^{\prime \prime}$ and $8.97797^{\prime \prime}$ for 1850°, and their substitution in (287) and (288) leads to the values given in Table VIII. Le Verrier gave only x, from which ($\mathrm{C}-\mathrm{A}$) / C has been computed by means of formula (286).

Taking the polar semi-diameter of the Earth for unity, if we putb for the polar semi-axis of any one of the hypothetical equipotential strata composing the Earth, and ρ and ε for the density and ellipticity of the same stratum, then Clairaut's derived equation may be written*

$$
\begin{equation*}
0=\left(b^{2} \frac{l^{2} \varepsilon}{d b^{2}}-6 \varepsilon\right) \int_{0}^{b} \rho b^{2} d b+2\left(b \frac{d \varepsilon}{d b}+\varepsilon\right) \rho b^{3} \tag{290}
\end{equation*}
$$

and from its integration the theoretical relations of the quantities discussed above will result. But in order to effect the integration it is first necessary to express ρ in terms of b; or, in other words, the law governing the distribution of density in the interior of the Earth is required. Le Gendre's (commonly called La Place's) law has usually been assumed, and the investigation has been put in various forms by different authors. \dagger We shall employ the expressions given by Thomson and Tait, \ddagger viz.

$$
\begin{align*}
f & =\frac{3}{\theta^{2}}(\mathrm{I}-\theta \cot \theta) \\
\frac{5 \sigma_{0}}{2 \varepsilon} & =\frac{f \theta^{2}}{3(f-\mathrm{I})}-\frac{3}{f} \tag{291}\\
\frac{\mathrm{C}-\mathrm{A}}{\mathrm{C}} & =\frac{\varepsilon-\frac{1}{2} \sigma_{0}}{1-6(f-\mathrm{I}) / f \theta^{2}}
\end{align*}
$$

where f is the ratio of the Earth's mean density to its surface density; σ_{0} is the ratio of the centrifugal force to gravity, both taken at the equator; and ε is the Earth's flattening.

These formulæ afford the means of deriving ε and f from the observed value of $(C-A) / C$; but here we encomnter the difficulty that θ is the real independent variable, and any attempt to change it leads to very complicated algebraic expressions. To avoid them Table IX has been formed, in which the numerical values of all the quantities involved in the equations (291) are exhibited throughout a sufficient range of the argument θ. In deriving ε from $5 \sigma_{0} / 2 \varepsilon$ we have taken

$$
\begin{equation*}
\sigma_{0}=\frac{4 a}{l t_{1}^{2}}=0.003467833=\frac{1}{288.3645} \tag{292}
\end{equation*}
$$

where $t_{1}{ }^{2}=7424252068^{s}, a=20926202$ feet, $l=3.251169$ feet, from (3), (13), and (17).

[^13]Entering 'Table IX with the observed value of $(\mathbf{C}-\Lambda) / \mathrm{C}$ from (289), vi\%, 0.00326860 , we find

$$
\begin{align*}
& \theta=144^{.6529^{\circ} \quad f=2.14596} \\
& \varepsilon=0.0033594=1: 297.67 \tag{293}
\end{align*}
$$

Whence, with the value of the Earth's mean density from (283)

$$
\begin{equation*}
\text { Surface density of the Earth }=5 \cdot 576 / 2 \cdot 146=2.598 \tag{294}
\end{equation*}
$$

Table IX.-Numerical Values of the Quantities whieh enter the Equutions (291).

${ }_{\pi}^{\text {A }} 180^{\circ}$	θ	f	$\frac{5 \sigma_{n}}{2 \varepsilon}$	ε	$\frac{\mathrm{C}-\mathrm{A}}{\mathrm{C}}$
134°	$2 \cdot 33874$	1.78720	246073	$1: 283.835=0.00352317$	$1: 288.851=0.003+199$
135	2.35619	1.81356	2.47087	$1: 285.004=0.00350872$	1: $290.259 \sim 0.00344520$
136	- 37365	.84119	$44^{4} 22$	$286.198 \quad 49408$	291.703 42814
137	-39110	-87014	49179	287.418 - 47925	$293 \cdot 186$
138	40855	-900 +8	-50259	285.664	$294.708 \quad 39319$
139	42601	93229	51363	289.936 - 44904	$296 \cdot 27137529$
140	$2.443+6$	1.965 69	2.52490	1: $291.237=0.00343363$	$1: 297 \cdot 875=0.003357$ II
141	46091	2.00080	-53641	$292.565 \quad 41804$	299.523 33867
142	-47837	-037 75	-54818	$293.922 \quad 40226$	$301.217 \quad 31987$
143	-49582	-07671	-560 21	$295.310 \quad 38627$	$302.957 \quad 30080$
144	-51327	-11785	-57250	$296 \cdot 727$ 37009	3047466
145	2.53073	$2 \cdot 16136$	$2 \cdot 58506$	I : $298 \cdot 176=0.00335372$	$1: 306 \cdot 586=0.00326173$
146	-54818	-20746	-59791	$299.658 \quad 33714$	308.4:9 24171
147	. 56563	-256 36	-61105	301.174 32037	310428 22136
1.98	. 58309	-30832	-62+49	$302 \cdot 724$	$312.435 \quad 20067$
149	. 60054	36360	. 6382.1	$304310 \quad 28612$	$314.501 \quad 17964$
150	2.61799	2.42249	2.65231	$1: 305.933=0.00326869$	$1: 316.630=0.00315826$

Le Gendre's law of the distribution of density within the Earth is given by the equation*

$$
\begin{equation*}
\rho=\frac{\mathrm{F}}{r} \sin \frac{r}{r}=\frac{\mathrm{F}}{r} \sin \theta \tag{295}
\end{equation*}
$$

where ρ is the density at the distance r from the Earth's center, F and π are constants, and $\theta=r / \mu$. Putting $r^{\prime}, \rho^{\prime}$, and θ^{\prime} for the surface values of r, ρ, and θ, and taking r^{\prime} for unity, we have from (293), (294), and (295)

$$
\mathrm{F}=\rho^{\prime} / \sin \theta^{\prime}=4.4907
$$

Further, if n is a fraction such that $n r^{\prime}=r$, then $n r^{\prime} / x=n \theta^{\prime}$; and therefore, upon substituting in it the numerical values of F and θ^{\prime}, equation (295) takes the form

$$
\begin{equation*}
\rho=\frac{4.4907}{n} \sin \left(n 144^{.652} 9^{\circ}\right) \tag{296}
\end{equation*}
$$

To evaluate ρ when n becomes zero, (295) nust be written
whence, by differentiating both numerator and denominator, and making r zero, we find for the center of the Earth

$$
\begin{equation*}
\rho=\frac{\frac{1}{\mu} \cos \frac{r}{r}}{\frac{1}{\mathrm{~F}}}=\frac{\mathrm{F}}{r}=\theta^{\prime} \mathrm{F} \tag{297}
\end{equation*}
$$

Table X exhibits the values given by formulæ (296) and (297) for the density of the Earth at various distances from its center; distilled water at 39.2° Fahrenheit being takell as unity.

Table X.—Density of the Interior of the Earth according to Le Gendre's Law.

Distance from center.	Density	Distance from center.	Density.
1.0	2.598	0.4	9.506
0.9	3.812	0.3	10.284
0.8	5.057	0.2	10.862
0.7	6.292	0.1	11.217
0.6	7.473	0.0	11.328
0.5	8.558		

Upon comparing the values of the flattening and surface density in (293) and (294) with the corresponding observed values in (4) and (284), viz:

$$
\begin{align*}
& \varepsilon=0.0034075=1: 293.47 \tag{298}\\
& \text { Surface density of the Earth }=2 \cdot 5^{6} \pm 0.16
\end{align*}
$$

a satisfactory agreement is found only in the case of the surface density. The two values of the flattening differ largely, but our knowledge respecting the figure of the Earth is scarcely sufficient to render it certain that the discordance exceeds the possible effect of errors of observation. Although the value of ε in (293) does not agree with that derived by General Clarke from his discussion of the great geodetic arcs, it is nevertheless within the limits of the values found from pendulum experiments, as will be evident from an examination of Table XI.

Table XI.-Flattening of the Eurth as found from I'endulum Experiments.

Date.	Author.	ε
1830	AIKy (17, P. 231)	1:282.89
1834	Bahis ($29, \mathrm{p} .94$)	$1: 285 \cdot 26$
1842	Formicts (293\%, p. 18)	$1: 250$.
1553	litcker ($25 \frac{1}{2}, \mathrm{~T}, 13, \mathrm{p}, 230$)	1:288.38
1869	Unfliminger (39, plp 313, 324, and 329).	1: 299.15
1876		$1: 2 S_{4} 4$
1850	Clarke (13, p. 350)	1:292.2 ${ }^{1} 1.5$
1884	Helmart (14, Teil 2, p. 241)	1: 299.26 ± 1.26
${ }_{188} 8_{4}$	Hill ($571 / 3$, p. 339, foot-note) : For the northern hemisphere	1:28544
	For the southern hem'sphere	$1: 290.02$

$(\mathrm{C}-\mathrm{A}) / \mathrm{C}$ is certainly much better known than ε, and more data for the determination of the latter are greatly needed. Respecting its derivation from pendulum experiments, we may remark that when the length of the pendulum is expressed by a complicated formula, such as Unferdinger's or Hill's, the simplest procedure will be to compute the numerical length of the pendulum at the equator and at the pole, and then, calling these lengths respectively l_{0} and l_{90}, formula (11) gives

$$
\varepsilon=\mathrm{I}-\frac{1}{l_{0}}\left(l_{90}-\frac{10 a}{t_{1}^{2}}\right)
$$

When the pendulum formula gives different lengths at the twe poles, different flattenings will result for the two hemispheres. Perhaps something might be gained by using Airy's extension of Clairaut's theorem to terms of the second order.*

If Δ is the mean density of the Earth; i, ρ^{\prime}, and ε^{\prime} the values assumed by b, ρ, and ε at the sea-level ; and $\rho=f(b)$; then it can be shown that after integration (290) must satisfy the following conditions : \dagger

$$
\begin{align*}
\text { I } & f^{\prime}(b) & <0 \\
\text { II } & \int_{0}^{1} b^{2} f(b) d b & =\frac{1}{3} \Delta \\
\text { III } & f(\mathrm{I}) & =\rho^{\prime} \\
\text { IV } & \int_{0}^{1} l^{2} f(b) d b & =\frac{\mathrm{C}-\mathrm{A}}{\mathrm{C}\left(\varepsilon^{\prime}-\frac{1}{2} \sigma_{0}\right)} \\
\text { V } & \frac{z_{0} \Delta}{l^{4} f(b) d b} & =\frac{2 \varepsilon^{\prime}}{5 \sigma_{0}}
\end{align*}
$$

With our own numerical values from (4), (283), (284), and (292)

$$
\begin{align*}
\frac{1}{3} J & =1859 \pm 0.0053 \\
\rho^{\prime} & =2.56 \pm 0.16 \\
\mathrm{C}-\mathrm{A} & =1.9530 \tag{300}\\
\mathrm{C}\left(\varepsilon^{\prime}-\frac{1}{2} \sigma_{0}\right) & =193 \varepsilon^{\prime} \\
\frac{2 \varepsilon^{\prime}}{5 \sigma_{0}} & =0.39305
\end{align*}
$$

Roche,* Lipschitz, \dagger Darmin, \ddagger Tisserand, $§$ Hill, $\|$ and Lévy \mathbb{I} have used forms of $f(b)$ other than Le Gexdre's law for integrating equation (290), but, singularly enough, when substituted in the left-hand member of IV of (299) they all give very nearly I.987, while with the geodetic value of ε the right-hand member gives i.953. Poncaré has recently investigated the subject in a more general manner** and has concludid that no form of $f(b)$ which is continuons between the limits O and I can satisfy the observed values of precession and nutation together with General Clarke's value of the flattening. He adds incidentally that the limiting values of the left-hand membrr of IV of (299) are 1.987 and 2.04 ; whence it follows that the limiting values of ε are I:296 and I:300. We are therefore in this dilemma: Either the flattening must lie between I : 296 and $1: 300$, or the distribution of density within the Earth can not be represented by any function which increases continuonsly from the surface to the center.

Those perturbations of the Moon which arise from the figure of the Earth hare been discussed by many geometers, among whom La Place, Plana, Pontécoulast, Hansen, and Hill are conspicuous. If we designate the maximum values of the perturbations in latitude and longitude respectively by δs and δv, then according to Hillit \dagger

$$
\begin{equation*}
\delta s=\frac{\beta_{2}}{a_{2}^{2}} \mathrm{G} \quad \quad \delta v=\frac{\beta_{2}}{a_{2}^{2}} \mathrm{H} \tag{301}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{G}=+\left(-\frac{2}{3}+\frac{40}{3} y^{2}+\frac{2}{3} e_{2}{ }^{2}+c_{1}{ }^{2}-\frac{13}{2} y^{4}+\frac{10}{3} y^{2} e_{2}{ }^{2}-\frac{267}{96} c_{2}^{4}\right. \\
& \left.-20 \gamma^{2} e_{1}{ }^{2}-c_{1}{ }^{2} e_{2}^{2}-\frac{1}{4} e_{1}^{4}+\frac{5}{4}{u_{2}^{2}}_{1}^{2}-\frac{\delta}{9} m^{2} n^{\prime \prime}\right) \frac{1}{m^{2}} \\
& +\left(-\frac{1}{4}+\frac{9}{2} \gamma^{2}+6 e_{2}{ }^{2}+{ }_{9}^{1} e_{1}{ }^{2}-\frac{\psi}{3 m m^{2} n^{\prime \prime}}\right) \frac{1}{m}-\frac{43}{18}+\frac{13223}{288} \gamma^{2} \tag{302}\\
& +\frac{30925}{1152} e_{2}^{2}-\frac{19}{4} e_{1}^{2}-\frac{3449}{576} m-\frac{59245}{3456} m^{2} \\
& \mathrm{H}=+\left(+\frac{38}{3} \gamma-7 \gamma^{3}-\frac{20}{3} \gamma e_{2}^{2}-19 \gamma e_{1}^{2}+\frac{152}{9} \frac{\gamma^{2} \psi}{m^{2} n^{\prime \prime}}\right) \frac{1}{m^{2}} \tag{303}\\
& +\left(+\frac{13}{4} y-\frac{135}{8} y^{3}-88 y e_{2}^{2}-\frac{13}{9} y \cdot e_{1}^{2}\right)_{m}^{I}+\frac{13585}{288} y+\frac{5825}{576} y m
\end{align*}
$$

[^14]With the mmerical values of $m, n^{\prime \prime}, y^{\prime}, c_{1}, e_{2}, \not$, , and a_{2} / a_{1} from $(54),(33),(6+4),(2+)$, (61), (241), (168), and Table VI, (302) and (303) give

$$
\begin{equation*}
\mathrm{G}=-119.77097 \quad \mathrm{Il}=+105.29095 \tag{304}
\end{equation*}
$$

Further

$$
a_{2}=\frac{u\left(1+\mu^{\prime}\right)}{\sin \mathrm{P}} \quad \beta_{2}=\frac{3 \sin 2\left(\omega^{\prime}\right)}{2 \mathrm{E}^{\prime}}\left(\mathrm{C}-\frac{1+\mathrm{B}}{2}\right)
$$

and by substituting these values in (301) we have, when A and B are assumed equal, and δs and δv are expressed in seconds of are

$$
\begin{equation*}
\frac{\left.3 \sin ^{2} \mathrm{P} \sin 2 G\right)}{2 \mathrm{E}^{\prime} a^{2}\left(1+x^{\prime}\right)^{2} \operatorname{arc} 1^{\prime \prime}}(\mathrm{C}-\mathrm{A})=\frac{\delta s}{\mathrm{G}}=\frac{\delta v}{I I} \tag{305}
\end{equation*}
$$

Whether the Earth was originally fluid or not, for our present purpose it may be regarded as covered by a fluid, becanse all observations relating to its figure are reduced to the sea-level; and by combining that fact with the single assumption that its interior is composed of nearly spherical strata whose densities are any function whatever of their distances from the center, La Place showed that*

$$
2 \mathrm{C}-\mathrm{A}-\mathrm{B}=\frac{16}{3} \pi\left(\varepsilon-\frac{1}{2} \sigma_{0}\right)\left(l^{2} \int \rho r^{2} d r\right.
$$

whence, as $\int \rho r^{2} d r=\frac{\mathrm{E}^{\prime}}{4 \pi}$, and A and B are assumed to be equal

$$
\begin{equation*}
\mathrm{C}-\mathrm{A}={ }_{3}^{2}\left(\varepsilon-\frac{1}{2} \sigma_{0}\right) \mathrm{E}^{\prime} a^{2} \tag{306}
\end{equation*}
$$

By eliminating $\mathrm{C}-\mathrm{A}$ between (305) and (306), the following expressions result for finding the flattening of the Earth from the observed values of δs and δv :

$$
\begin{equation*}
\frac{\sin ^{2} \mathrm{P} \sin 2 \omega}{\left(\mathrm{I}+\mu^{\prime}\right)^{2} \operatorname{arc} \mathrm{I}^{\prime \prime}}\left(\varepsilon-\frac{1}{2} \sigma_{0}\right)=\frac{\delta s}{\mathrm{G}}=\frac{\delta v}{\mathrm{H}} \tag{307}
\end{equation*}
$$

With the numerical values from Table YI, (57), (78), (292), (302) and (303), (305) and (307) give

$$
\begin{align*}
& \mathrm{C}-\mathrm{A}=-0.00013+44 \mathrm{E}^{\prime} a^{2} \delta s \tag{308}\\
&=+000015293 \mathrm{E}^{\prime} a^{2} \delta v \\
& \varepsilon=+0.00173392-0.00020167 \delta s \tag{309}\\
&=+0.00173392+0.000229+0 \delta v
\end{align*}
$$

On account of accidental ervors in the observed values of δs and δv, the two formula in each of these pairs will seldom yield identical results. To ohtain the most
probable values of $\mathrm{C}-\mathrm{A}$ and ε we must therefore resort to the method of least squares, and when the probable errors of δs and δv are equal, that gives

$$
\begin{align*}
\mathrm{C}-\mathrm{A} & =(-0.000075836 \delta s+0.000066668 \delta v) \mathrm{E}^{\prime} a^{2} \tag{310}\\
\varepsilon & =+0.00173392-0.00011375 \delta s+0.00010000 \delta v
\end{align*}
$$

The formulæ (309) are independent of all theories respecting the distribution of matter within the Earth, Sir Geo. G. Stokes having shown* that equation (306) remains valid, whatever that distribution may be; and, as Dr. Hill has carried the expressions (302) and (303) to terms of the eighth order in the lunar theory, the uncertainty in the coefficients of δs and δv is not likely to exceed four or five units in the last place of decimals.

For comparison with (309), it will suffice to quote the formulæ found respectively by Pontécoulant and Hansen. Those of Pontécollant are algebraically identical with (307), but his series for G and H are not pushed so far as in (302) and (303), the expressions employed being \dagger

$$
\begin{aligned}
& \mathrm{G}=\left(-\frac{2}{3}-\frac{m}{4}-\frac{43}{\mathrm{I}} m^{2}+e_{1}^{2}+\frac{4}{3} \tan ^{2} \mathrm{I}\right) \frac{\mathrm{I}}{m^{2}} \\
& \mathrm{H}=\left(+\frac{\mathrm{I} 9}{3}+\frac{\mathrm{I} 3}{8} m\right) \frac{\tan \mathrm{I}}{m^{2}}
\end{aligned}
$$

With our values of the constants, from (24), (54), and (65), these expressions give

$$
\mathrm{G}=-12 \mathrm{I} .44840 \quad \mathrm{H}=+103.8805_{52}
$$

whence, by substitution in (307)

$$
\begin{align*}
\varepsilon & =+0.00173392-0.00019888 \delta s \tag{3II}\\
& =+0.00173392+0.00023251 \delta \mathrm{v}
\end{align*}
$$

Hansen's formula are, in his own notation \ddagger

$$
\begin{align*}
& \rho=\frac{1}{2} \varphi-2\binom{a}{D}^{2} \frac{I+4 \sin ^{2} \frac{1}{2} \mathrm{~J}}{\sin \varepsilon \cos \varepsilon} \cdot \frac{\alpha+\eta-p}{2+(\alpha+\eta-p)} \lambda_{1} . \tag{312}\\
& \pi_{1}=20 \sin \frac{1}{2} \mathrm{~J}\left(\mathrm{I}+\frac{3}{2} \sin ^{2} \frac{1}{2} \mathrm{~J}\right)\left[\mathrm{I}-\frac{1}{2}(\alpha+\eta-p)\right] \lambda_{1}
\end{align*}
$$

His α, η, and p are related to our $n_{\star}{ }^{\prime \prime}, \mu$, and ψ_{1}, through the expressions

$$
n_{\star}^{\prime \prime}(\alpha+\eta)=\mu \quad n_{\Perp}{ }^{\prime \prime} p=\psi_{1}
$$

and as his $\rho, \varphi, \mathrm{D}, \mathrm{J}, \varepsilon, \lambda_{1}$, and π_{1}, are our $\varepsilon, \sigma_{0}, r_{1}, \mathrm{I}, \omega, \delta \delta$, and $\delta \nu$, the formulæ (312) become in our notation

$$
\begin{align*}
\varepsilon & =\frac{1}{2} \sigma_{0}-\frac{\left(4+16 \sin ^{2} \frac{1}{2} \mathrm{I}\right) \operatorname{arc} \mathrm{I}^{\prime \prime}}{\sin ^{2} \mathrm{P} \sin 2 \omega} \cdot \frac{\mu-\psi_{1}}{2 n_{4}^{\prime \prime}+\mu-\psi_{1}} \delta s \tag{3I3}\\
\delta \nu & =20 \sin \frac{1}{2} \mathrm{I}\left(\mathrm{I}+\frac{3}{2} \sin ^{2} \frac{1}{2} \mathrm{I}\right)\left[\mathrm{I}-\frac{1}{2}\left(\mu-\psi_{1}\right) / n_{4}^{\prime \prime}\right] \delta s
\end{align*}
$$

With the numerical values from Table VI, (49), (53), (65), (78), (24 1) and (292), (313) gives

$$
\begin{align*}
\delta v & =-0.898624, \delta s \\
\varepsilon & =+0.00173392-0.00019662 \delta s \tag{314}\\
& =+0.00173392+0.00021880 \delta v
\end{align*}
$$

The formule (309) and (311) are directly comparable with each other, but not with (314). Owing to the peculiar form of Hansen's lumar theory, his perturbations differ from those found in the usual ecliptic .theory, and to aroid the troublesome transformations which occur in passing from the one theory to the other, we shall derive the necessary transition factors by comparing (309) and (314). Distinguishing Hansen's δs and δv by accents, and equating the corresponding expressions in the two sets of formulæ, we have

$$
\begin{aligned}
& 201667 \delta s=196617 \delta s^{\prime} \\
& 229400 \delta v=21879 \delta \delta v^{\prime}
\end{aligned}
$$

Whence

$$
\begin{equation*}
\delta s=0.97496 \delta s^{\prime} \quad \delta v=0.95378 \delta v^{\prime} \tag{315}
\end{equation*}
$$

Table XII contains the values of δs and $\delta \nu$ determined from observation by various astronomers, together with the resulting values of $\mathrm{C}-\mathrm{A}$ and ε, computed by means of the formulx (308), (309), and (310). The values of δs and δv, which Bürg originally derived in 1806, and revised in $1823-1825$, are based upon 3233 observations of the Moon, made by Maskelyne, at Greenwich, during the years 1765 to 1793^{*} Burckhardt's values are based upon "more than four thousand observations," which La Place says were those of Bradley and Maskelyne. \dagger Airy's value is based upon the entire series of lunar observations made at Greenwich during the years if50 to 185I, in which the data used by Bürg and Burckhardt are included, and constitute but a small part. Hansen never explained the derivation of his values, but simply wrote: "Die Mondbeobachtungen haben mir gegeben $\lambda_{1}=-8.382^{\prime \prime}, \pi_{1}=-7.624$ "," whence the numbers in Table XII result through the formule (315):

Table XII.-Observed Talues of ecrtain Perturbations of the Moon which depend upon the Figure of the Earth, together with the resulting Vralues of $\mathrm{C}-\Lambda$ aud ε.

Date.	Authority.	ds	$\delta \nu$	$\mathrm{C}-\mathrm{A}$	\boldsymbol{F}
1806	BÜrg ($391 / 2$, Introduction Tab. de la Lime).	$\begin{array}{r} 11 \\ -8 \cdot 0 \end{array}$	$\begin{array}{r} 11 \\ +6.8 \end{array}$	$0.00106003 \mathrm{E}^{\prime} \boldsymbol{n}^{2}$	$0.00332392=1: 300 \cdot S_{5}$
1812	Burckilarist ($451 / 4$, Introduction)	8.0	$7 \cdot 0$	$0.00107337 \mathrm{E} \mathrm{Cr}^{2}$	$0.0033439^{2}=1: 299.05$
1823	BURG (45 $1 / 2$, s. 324).	$8 \cdot 6$		\} $0.00113820 \mathrm{E} \mathbf{a}^{2}$	$0.00344117=1: 290 \cdot 60$
1825	Bürg ($453 / 4$, S. 14)		$7 \cdot 29$	¢	00034117 - 1 : 2 ¢
1861	AIRy $(44, \mathrm{p} .12)$		6.44	$0.0009^{5} 4 \mathrm{~S}_{7} \mathrm{E}^{\prime} n^{2}$	$0.00321126=1: 311 \cdot 40$
${ }_{1} 862$	Ilansen (55, p. 470).	-8.172	+7:272	$0.00110454 \mathrm{E}^{\prime} a^{2}$	$0.00339068=1: 294.93$

[^15]Of the results contained in Table XII, those found from the data of Hansen are probably the most trustworthy. Accordingly we shall take

$$
\begin{align*}
\mathrm{C}-\Lambda & =0.00110454 \mathrm{E}^{\prime} a^{2} \tag{316}\\
\varepsilon & =0.00339068=1: 294.93 \tag{317}
\end{align*}
$$

whence, by comparing (289) and (3 16)

$$
\begin{equation*}
\mathrm{A}=0.33683 \mathrm{E}^{\prime} \tau^{2} \quad \mathrm{C}=0.33793 \mathrm{E}^{\prime} a^{2} \tag{318}
\end{equation*}
$$

where E^{\prime} is the mass of the Earth, and a its equatorial semi-diameter.
This method of determining the numerical values of the Earth's moments of inertia is due to Hasses,*" who has pointed out that it affords a fine confirmation of the Earth's increase of density from its surface to its center, the value of C for a homogeneous spheroid being much greater, viz, $0,40000 \mathrm{E}^{\prime} a^{2}$.

25.—UNOERTAINTY IN THE VALUE OF ε : AND ITS EFFECT UPON THE OTHER CONSTANTS.

The actual state of our knowledge respecting the flattening of the Earth is best shown by bringing together the more important determinations of that quantity from (4), Table XI, (293) and (317). They are

From geodetic arcs (Clarke)
: 293.47
From pendulum experiments (Hill) $1: 2877 \mathrm{I}$
From pendulum experiments (Clarre) I:292.2
From pendulum experiments (Helmert) i:299.26
From precession and nutation, combined with Le Gendre's law of density . $1: 29767$
From perturbations of the Moon $1: 29493$
Most unfortunately, every one of these results is affected by much uncertainty. General Clarke used six separate arcs in determining his spheroid of i 8So, all of which were well represented by equations (3) and (4). Recently two of the longest of these ares have been comected, namely, the Anglo-French and the Russian, and according to statements made at the Paris International Geodetic Congress of October, 1889, it now appears that the similar ellipses passing through them have neither a common center nor common axes! Thus General Clarke's ε is invalidated, and the possibility of deriving a trustworthy value from the present arcs becomes questionable. The pendulum experiments are equally unsatisfactory. The result which Helmert deduced from them by the condensation method, differs largely from that found by Hill through a formula involving twenty unknown quantities, while General Clarke's value, computed yet otherwise, agrees with neither Helmert's nor Hill's, but lies midway between them. In i 8_{27} Brot discussed a num? 促 of pendulum experiments, which he divided into three groups, having their respective centers as nearly as possible at the
equator, at latitude 45°, and at the pole. From the first and second gromps he found $\varepsilon=1: 276.38$; from the second and third, $\varepsilon=1: 306.33$; and from the first and third, $\varepsilon=1: 29059$.* These results look as if the flattening viried with the region containing the dominating number of pendulum oxperiments, but it is more probable that their discordance arises from accidental peculiarities of the stations occupied, and there is reason to fear that even yet we have not accumulated sufficient data to eliminate all such peculiarities. As to the result derived from precession and mutation, it is evidently vitiated by our ignorance of the internal constitution of the Larth; and even the theoretically exact value from lumar perturbations is rendered questionable by the meertainty attaching to the observed values of the perturbations themselves. Indeed the facts thus far adduced scarcely wammat any conclusion more definite than that the flattening probably lies between 1:290 and $1: 300$, but we shall see presently that there is some further evidence which tends in the direction of the smaller limit.

We have next to examine how much the system of constants given on page 73 is affected by the uncertainty in the Earth's flattening, and on account of the number of variables involved, the simplest procedure will bo to recompute them all with an assumed flattening of $1: 300$. For that purpose the numerical coefficients in formulie (156), (157), and (i66) require modification.

A comparison of (152) and (156) shows that the logarithmic coefficient of the latter is

$$
\begin{equation*}
\frac{1}{3} \log \frac{4 a(\mathrm{I}+x)^{3}}{l \rho^{2} \mathrm{~T}^{2}\left(\mathrm{I}+\sigma \sqrt{\frac{2}{3}}\right)}-4.68557487=2.78499322 \tag{319}
\end{equation*}
$$

Here l, ρ, and σ are functions of ε, and when ε becomes $\varepsilon+\epsilon l \varepsilon, l, \rho$, and σ become respectively $l+d l, \rho+d \rho$, and $\sigma+d \sigma$. Accordingly, we may write

$$
\frac{1}{(l+d l)(\rho+d \rho)^{2}[\mathrm{I}+(\sigma+d \sigma) \sqrt{2}]}=\frac{\mathrm{I}}{l \rho^{2}(\mathrm{I}+\sigma \sqrt{2})} \times \frac{l}{l+d l} \times \frac{\rho^{2}}{(\rho+d \rho)^{2}} .
$$

and, therefore,

$$
\begin{gather*}
\frac{1}{3} \log \frac{4 a(\mathrm{I}+x)^{3}}{(l+d l)(\rho+d \rho)^{2} \mathrm{~T}^{2}\left[\mathrm{I}+\left(\sigma+(l \sigma) \sqrt{\frac{2}{3}}\right]\right.}-4.68557487 \\
=2.78499322+\frac{1}{3} \log \frac{l}{l+d l}+\frac{1}{3} \log \frac{\rho^{2}}{(\rho+d \rho)^{2}}+\frac{1}{3} \log \frac{\mathrm{I}+\sigma \sqrt{2}}{\mathrm{I}+(\sigma+d \sigma) \sqrt{ } \frac{2}{3}} \tag{320}
\end{gather*}
$$

Formula (in) gives for the length of the seconds pendulum at latitude 45°

$$
l_{45}=l_{0}\left(\mathrm{I}-\frac{1}{2} \varepsilon\right)+10 a / 2 t_{1}{ }^{2}
$$

whence

$$
\begin{equation*}
l_{0}=\frac{\frac{l_{45}-10 a / 2 t_{1}^{2}}{\mathrm{I}-\frac{1}{2} \varepsilon}}{* 201 / 2, \mathrm{p} \cdot 38} \tag{321}
\end{equation*}
$$

Again, as arc $\sin \sqrt{\frac{1}{3}}=35^{\circ} 15^{\prime} 52^{\prime \prime}$, the length of the pendulum at that latitude is

$$
\begin{equation*}
l_{35 \cdot 3}=l_{0}\left(\mathrm{I}-\frac{1}{3} \varepsilon\right)+\frac{\mathrm{IO} a}{3 t_{1}{ }^{2}}=\left(l_{45}-\frac{\mathrm{IO} a}{2 t_{1}{ }^{2}}\right) \frac{\mathrm{I}-\frac{1}{3} \varepsilon}{1-\frac{1}{2} \varepsilon}+\frac{\mathrm{IO} a}{3 t_{1}{ }^{2}} \tag{322}
\end{equation*}
$$

or, with the numerical values of l_{45}, a and t_{1} from page 9

$$
\begin{equation*}
l_{35 \cdot 3}=3.2456297 \frac{1-\frac{1}{3} \varepsilon}{1-\frac{1}{2} \varepsilon}+0.0093954 \text { feet } \tag{323}
\end{equation*}
$$

Differentiating (323), and dropping the subscript $35^{\circ} 3$
and then, with sufficient accuracy

$$
\begin{align*}
\frac{l}{l+d l} & =1-\frac{d l}{l}=1-\frac{0.54094}{l\left(\mathrm{I}-\frac{1}{2} \varepsilon\right)^{2}} d \varepsilon \tag{325}\\
\log \frac{l}{l+d l} & =-\frac{0.54094 \mathrm{M}}{l\left(\mathrm{I}-\frac{1}{2} \varepsilon\right)^{2}} d \varepsilon
\end{align*}
$$

where M is the modulus of the common system of logarithms.
From (4) and (5)

$$
\begin{equation*}
e^{2}=2 \varepsilon-\varepsilon^{2} \quad d e=\frac{(\mathrm{I}-\varepsilon) d \varepsilon}{e} \tag{326}
\end{equation*}
$$

and with that value of e^{2}, and $\sin ^{2} \varphi=\frac{1}{3},(7)$ gives

$$
\begin{equation*}
\rho^{2}=\frac{3-4 \varepsilon+6 \varepsilon^{2}-4 \varepsilon^{3}+\varepsilon^{4}}{3-2 \varepsilon+\varepsilon^{2}} \tag{327}
\end{equation*}
$$

Differentiating

$$
\begin{equation*}
d \rho=\frac{-6+30 \varepsilon-44 \varepsilon^{2}+28 \varepsilon^{3}-10 \varepsilon^{4}+2 \varepsilon^{5}}{2 \rho\left(3-2 \varepsilon+\varepsilon^{2}\right)^{2}} d \varepsilon \tag{328}
\end{equation*}
$$

and then, with sufficient accuracy

$$
\begin{align*}
\frac{\rho^{2}}{(\rho+d \rho)^{2}} & =\frac{\rho^{2}}{\rho^{2}\left(1+\frac{2 d \rho}{\rho}\right)}=1-\frac{2 d \rho}{\rho} \\
& =1+\frac{6-30 \varepsilon+44 \varepsilon^{2}-28 \varepsilon^{3}}{9-18 \varepsilon+29 \varepsilon^{2}-36 \varepsilon^{3}} d \varepsilon \tag{329}\\
\log \frac{\rho^{2}}{(\rho+d \rho)^{2}} & =+\frac{6-30 \varepsilon+44 \varepsilon^{2}-28 \varepsilon^{3}}{9-18 \varepsilon+29 \varepsilon^{2}-36 \varepsilon^{3}} 1 I d \varepsilon
\end{align*}
$$

The differentiation of (148) with respect to σ, l, and e gives

$$
\begin{equation*}
d \sigma=\sigma\left\{\frac{e \sin ^{2} \varphi}{1-e^{2} \sin ^{2} \varphi} d e-\frac{d l}{l}\right\} \tag{330}
\end{equation*}
$$

and by substituting the values of $d l$ and de from (324) and (326), together with $\sin ^{2} \varphi=\frac{1}{3}$

$$
\begin{equation*}
d \sigma=\sigma\left\{\frac{\mathrm{I}-\varepsilon}{3-e^{2}}-\frac{0.54094}{l\left(\mathrm{I}-\frac{1}{2} \varepsilon\right)^{2}}\right\} d \varepsilon \tag{331}
\end{equation*}
$$

Also, with sufficient accuracy

$$
\frac{1+\sigma \sqrt{3}}{1+(\sigma+d \sigma) \sqrt{3}}=1-\frac{d \sigma \sqrt{3}}{1+\sigma \sqrt{3}}
$$

and therefore

With $M=0.434294$, and $\varepsilon=1 / 293.466, e^{2}=0.00680348, l=3.25687$ feet, $\sigma=0.0028297,1+\sigma \sqrt{2}=1.0023 \mathrm{I}$, from (4), (5), (14), and (154), (325), (329), and (332) give

$$
\begin{align*}
& \frac{1}{3} \log \frac{l}{l+d l}+\frac{1}{3} \log \frac{\rho^{2}}{(\rho+d \rho)^{2}}+\frac{1}{3} \log \frac{1+\sigma \sqrt{3}}{1+(\sigma+d \sigma) \sqrt{2}} \tag{333}\\
& \quad=\frac{1}{3}(-0.072379+0.286564-0.000166) d \varepsilon
\end{align*}
$$

A comparison of (152) with (157) shows that the logarithmic coefficient of the latter is

$$
\log \frac{4 a\left(1+x^{\prime}\right)^{3}}{l \rho^{2} \mathrm{~T}_{1}^{2}\left(1+\sigma \sqrt{3}^{2}\right)}=4.6650707 \mathrm{I}-10
$$

whence, by reasoning identical with that employed in connection with (319)

$$
\begin{equation*}
\log \frac{4 a\left(1+x^{\prime}\right)^{3}}{(l+d l)(\rho+d \rho)^{2} \mathrm{~T}_{1}^{2}\left[\mathrm{I}+(\sigma+d \sigma) \sqrt{3}_{3}^{2}\right]}=4.66507071+0.21402 d \varepsilon-10 \tag{334}
\end{equation*}
$$

Upon equating (157) and (165) we obtain an expression of the form

$$
\begin{equation*}
\left\{\frac{1-\frac{1}{A} \sin ^{3} P}{\frac{1}{A B}+\frac{C}{B}-\frac{C}{A B} \sin ^{3} P}\right\} \tag{335}
\end{equation*}
$$

where, from (334) and (165)

$$
1 / A=21623665-106561 d \varepsilon \quad B=10288642 \quad C=38442769
$$

and the substitution of these values gives the third formula of (336).
Collecting our results, we have from (156), (157), (166), (320), (333), (334), and (335)

$$
\begin{align*}
& p=[2.78499322+0.07 \mathrm{I} 34 d \varepsilon]\left(\frac{\mathrm{E}}{\mathrm{I}+\mathrm{MI}}\right)^{\frac{1}{4}} \\
& \mathrm{E}^{\prime} \tag{336}\\
& \mathrm{M}=\frac{\sin ^{3} \mathrm{P}}{[4.6650707 \mathrm{I}+0.21402 d \varepsilon-\mathrm{IO}]-\sin ^{3} \mathrm{P}} \\
& \\
& \left.=2 \frac{\mathrm{I}-(216236.65-10656 \mathrm{I} d \varepsilon) \sin ^{3} \mathrm{P}}{\left.3.7574449-0.010357 d \varepsilon-\left(80795^{2.64}-398 \mathrm{I} 57 d \varepsilon\right) \sin ^{3} \mathrm{P}\right\}}\right\}
\end{align*}
$$

These formulix are adapted to any ralue of the flattening between the limits $1: 290$ and I : 300, and in order to facilitate their use the following supplementary expressions are added:

$$
\begin{align*}
d \varepsilon & =\varepsilon-1 / 293.466
\end{align*}=\varepsilon-0.003407550 .21+020 d \varepsilon .
$$

With a flattening of $\mathrm{I}: 300, d \varepsilon=-0.00007422$, and the conditions which must be satisfied by the adjusted quantities are, from (336), (175), (i80), (i82), and (18

$$
\begin{align*}
\frac{1}{\mathrm{I}} & =\frac{\sin ^{3} \mathrm{P}}{[4.66505483-\mathrm{IO}]-\sin ^{3} \mathrm{P}} \\
\text { o or } v_{1} & =p-[2.784988]\left(\frac{\mathrm{E}}{\mathrm{I}+\mathrm{MI}}\right)^{\frac{1}{3}} \\
\text { o or } v_{2} & =p-[5.303125-\mathrm{IO}] \mathrm{PQ} \frac{\mathrm{I}+\mathrm{MI}}{\mathrm{I}-\mathrm{M}} \\
\text { o or } v_{3} & =p-[4.68 \mathrm{I} 962-\mathrm{IO}] \mathrm{PL} \frac{\mathrm{I}+\mathrm{M}}{\mathrm{M}} \tag{8}\\
\text { o or } v_{4} & =p-\frac{[8.912482]}{\mathrm{V} \theta} \\
\text { o or } v_{5} & =p-\frac{[7.526036]}{\mathrm{V} \alpha} \\
\text { O or } v_{6} & =\mathrm{d}-\left\{\frac{1-216244.56 \sin ^{3} \mathrm{P}}{3.7574457-807982^{2} 20 \sin ^{3} \mathrm{P}}\right\}
\end{align*}
$$

The values of the observed quantities will be the same as in (195); except those of P and $\mathbf{2}$, for which (70), (75), and (204) give

$$
\begin{align*}
& \mathrm{P}=3423^{\circ} 08^{\prime \prime}+5062^{\prime \prime} d \varepsilon \pm 0.12 \mathrm{I}^{\prime \prime} \\
& q=50.35^{\prime \prime} 6^{\prime \prime}-3^{1} 716^{\prime \prime} d \mathrm{E} \pm 0.00248^{\prime \prime} \tag{339}
\end{align*}
$$

With the above value of $d \varepsilon$, and $d \mathrm{E}=+0.00000005 \mathrm{I}$, we therefore have

$$
\begin{align*}
& p=s \cdot 834^{\prime \prime} \pm 0.0086^{\prime \prime} \\
& \mathrm{P}=3422.70 .4 \pm 0121 \\
& \mathrm{P}=50.3570 \pm 0.00248 \\
& \text { हो }=9.233 \mathrm{I} \pm 0.0112 \\
& \mathrm{Q}=125.46 \pm 0.35 \\
& \mathrm{~L}=6.514 \pm 0.016 \tag{340}\\
& \alpha=20.466 \pm 0.011 \\
& \theta=497^{\circ} 0^{9} \quad \pm \mathrm{I}^{\circ} \mathrm{O}^{8} \\
& \mathrm{~V}=186347 \pm 36 \text { miles } \\
& \mathrm{E}=0.000003005097 \pm 0.000000016056
\end{align*}
$$

The substitution of these observed values in the conditional equations (338) leads to the following system of numbers

$$
\begin{array}{ll}
v_{1}=+0.07381^{\prime \prime} & v_{4}=+0.00720^{\prime \prime} \\
v_{2}=-0.00959 & v_{5}=+0.02999 \\
v_{3}=-0.03355 & v_{6}=+0.03560 \tag{341}
\end{array}
$$

from which the corrections by adjustment given in Tahle XIII result by a donble application of the formula (193), precisely as in the case of Tahle VI.

It is now desirable to have a method more direct than that employed on page 72 for finding the probable errors of the masses of Meremy and Vemus after they have been corrected on account of $d \mathrm{E}$. As the expressions (203) are of the form $\mathrm{A}^{\prime}+\mathrm{B}^{\prime} d \mathrm{E}=(\mathrm{I}+\nu) / m_{0}$, the expressions for ν, ν^{i}, and ν^{if} will be of the form $v=\mathrm{A}^{\prime \prime}+\mathrm{B}^{\prime \prime} d \mathrm{E}$, and when they are substituted in the olservation equations (129) the resulting residuals will be of the form, $v=\mathrm{A}^{\prime \prime \prime}+\mathrm{B}^{\prime \prime \prime} d \mathrm{E}$. We may therefore write

$$
\begin{equation*}
\Sigma v v=\mathrm{A}+\mathrm{B} \cdot d \mathrm{E}+\mathrm{C}(d \mathrm{E})^{2} \tag{342}
\end{equation*}
$$

and if the probable error of $d \mathrm{E}$ is $\pm d \mathrm{E}^{\prime}$, when that quantity is given there will be an additional term of the form $+\mathrm{D}\left(d \mathrm{E}^{\prime}\right)^{2}$. The algebraic expressions for $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are simple enough, but they are not needed here because the numerical values of these constants can be most readily found by an indirect process.

The residuals on page 48 give $\Sigma v v=4.25731$; those on page 72 give, for $d \mathrm{E}=+5^{1} 440 \pm 2733 \mathrm{I}, \Sigma v v=550065+0.57855$, where 0.57855 is the part arising from the probable error of $d \mathrm{E}$; and a special computation gives, for $d \mathrm{E}=+25000$, $\Sigma v v=4.55104$. In accordance with (342), these numbers yield the equations

$$
\begin{align*}
& 4.25731=\mathrm{A} \\
& 5.50065=\mathrm{A}+5.1440 \mathrm{~B}+26.46074 \mathrm{C} \tag{343}\\
& 4.55104=\mathrm{A}+2.5000 \mathrm{~B}+6.25000 \mathrm{C} \\
& 0.57855=7.46984 \mathrm{D}
\end{align*}
$$

where $d \mathrm{E}$ and $d \mathrm{E}^{\prime}$ have been multiplied by 100000000 for convenience in printing. The solution of (343) gives

$$
\begin{align*}
\Sigma v v=4.25731+[3.6273] d \mathrm{E} & +\left[\begin{array}{llll}
14.671 & 91
\end{array}\right](d \mathrm{E})^{2} \tag{344}\\
& +[14.88903]\left(d \mathrm{E}^{\prime}\right)^{2}
\end{align*}
$$

the quantities within brackets being the logarithms of the numbers they represent.
From (198), (203), and (344), together with the usual formula for probable error, the following general expressions for the corrected masses of Mercury, Venns and the Earth have been derived :

$$
\begin{align*}
& \text { Mass of Mercury }=\frac{0.3446+7+266200 d \mathrm{E} \pm \mathrm{R}}{3000000} \\
& \text { Mass of Vemus }=\frac{0.992996-204107 d \mathrm{E} \pm \mathrm{R}^{\prime}}{401847} \tag{345}\\
& \text { Mass of Earth }=\frac{1.066618+354936\left(d \mathrm{E} \pm d \mathrm{E}^{\prime}\right)}{354936}
\end{align*}
$$

where $d \mathrm{E}$ is the correction to the mass of the Earth given by (193), $d \mathrm{E}^{\prime}$ its probable error, and

$$
\begin{align*}
& \log R=\frac{1}{2}\{\log \cdot \Sigma v v+6.979147\} \\
& \log R^{\prime}=\frac{1}{2}\{\log \cdot \Sigma v v+4.566211\} \tag{346}
\end{align*}
$$

The probable errors in the second and fourth columns of Table XIII have been computed from the data in Table V, with $\varphi=1 \cdot 375^{8}$; and the values of the appended planetary masses, together with their probable errors, have been computed by means of the formulæ (344) tn (346), thus avoiding the laborious process described on page 72 .
Table XIII.-Results for the Epoch 18.50.0, upon the assumption that the Earth's Flattening is 1:300.00.

Quantities.	Observed values.	Corrections by adjustment.	Adjusted values.
p	$\stackrel{\prime \prime}{8.834} \pm \stackrel{\prime \prime}{0.01183}$	$\begin{aligned} & \prime \prime \\ & -0.02463 \end{aligned}$	$8.80937 \pm \stackrel{\prime \prime}{\prime \prime} .00554$
P	3422.704 ± 0.16647	-0.107 74	3422.59626 ± 0.03897
3	$50.357{ }^{\circ} \pm 0.00341$	+0.000 12	50.35712 ± 0.00341
21	9.2331 ± 0.01541	-0.01316	921994 ± 0.00823
Q	125.46 ± 0.48153	-0.505 38	124.95462 ± 0.08003
L	6.514 ± 0.02201	+ 0.00740	6.52140 ± 0.01804
a	20.466 ± 0.01513	-0.011 35	20.45465 ± 0.01236
${ }^{*}$	$497.0^{8} \pm 1.4033^{28}$	$+\mathrm{r}^{\circ} 00981^{\circ}$	$498.0098 \mathrm{~T}^{8}$ 士 0.30067^{8}
V	$186347 \pm 49^{\circ} 529$ miles	-10.009 miles	186336.99 ± 48.542 miles
E	$0 \cdot 000003005097$		0.000003056281
	± 0.000000022090		± 0.000000005784
M		$0.01233207 \pm 0.00003458$

Mass of Mercury $=\frac{0.35^{8272 \pm 0.072496}}{3000000}=\frac{1}{8373526 \pm 1766213}$
Mass of Venus $=\frac{0.982549 \pm 00004507}{401847}=\frac{1}{408984 \pm 1876}$
Mass of Earth $=\frac{1.084785 \pm 0.002053}{354936}=\frac{1}{327195 \pm 619}$
Mass of Moon $=\frac{1}{S_{1} \cdot 0894 \pm 0.2274}$
Mean distance from Earth to Sun $=92797600 \pm 58318$ miles.
Mean distance from Earth to Moon $=238861 \pm 2.719$ miles.
As the correction which would accrue to the equatorial diameter of the Earth upon changing the flattening from i : 293.5 to $\mathrm{I}: 300$ is of the same order as the probable uncertainty in the diameter itself, the distances of the Sun and Moon appended to Table XIII have been computed with the same equatorial radius as those appended to Table VI. Nevertheless, it is important to inquire how a small change in the flattening will affect our adopted values of the Earth's equatorial and polar semi-
diameters, and we therefore revert to General Clarke's final equations for the determination of these quantities. 'They are*

$$
\begin{align*}
& 0=+56.6615+301.7624 u+126.9252 v \\
& 0=-16.9677+126.9252 u+221.4307 v \tag{347}
\end{align*}
$$

and our first task will be to express u and v in terms of $d b$ and $d \varepsilon$. 'To that end, let

$$
\begin{array}{ll}
a=\frac{b}{\mathrm{I}-\varepsilon}=a_{0}+d a & b=b_{0}+d b \tag{348}\\
\varepsilon=\varepsilon_{0}+d \varepsilon & b_{0}=20855500 \text { feet }
\end{array}
$$

Then \dagger

$$
\begin{align*}
& b=b_{0}+d b=b_{0}\left\{\mathrm{I}+\frac{u}{10000}\right\} \tag{349}\\
& n=\frac{a-b}{a+b}=\frac{\varepsilon}{2-\varepsilon}=\frac{1}{590}+\text { Iov arc } \mathrm{I}^{\prime \prime} \tag{350}
\end{align*}
$$

and from (349)

$$
\begin{equation*}
u=0.000479490 d b \tag{351}
\end{equation*}
$$

Further, as

$$
\begin{equation*}
\frac{\varepsilon}{2-\varepsilon}=\frac{\varepsilon_{0}+d \varepsilon}{2-\varepsilon_{0}-d \varepsilon}=\frac{\varepsilon_{0}}{2-\varepsilon_{0}}+\left\{\frac{1}{2-\bar{\varepsilon}_{0}}+\frac{\varepsilon_{0}}{\left(2-\varepsilon_{0}\right)^{2}}\right\} d \varepsilon \tag{352}
\end{equation*}
$$

we may write $\varepsilon_{0} /\left(2-\varepsilon_{0}\right)=1 / 590$, and from that, together with (350) and (352)

$$
\begin{gather*}
\left\{\frac{1}{2-\varepsilon_{0}}+\frac{\varepsilon_{0}}{\left(2-\varepsilon_{0}\right)^{2}}\right\} d \varepsilon=10 v \text { arc } 1 "_{\prime \prime} \tag{353}\\
\varepsilon_{0}=1 / 295.5=0.003384095 \quad v=10348.2 d \varepsilon
\end{gather*}
$$

The substitution of the values of u and v from (351) and (353) in the first equation of (347) gives

$$
\begin{equation*}
d b=-391 \cdot 6-9077539 d \varepsilon \tag{354}
\end{equation*}
$$

and by differentiating the expression $a_{0}\left(\mathrm{I}-\varepsilon_{0}\right)=b_{0}$, and substituting the values of b_{0}, ε_{0}, and $d b$ from (348), (353), and (354)

$$
\begin{equation*}
d a=\frac{d b}{1-\varepsilon_{0}}+\frac{b_{0} d \varepsilon}{\left(\mathrm{I}-\varepsilon_{0}\right)^{2}}=-392^{\circ} 9+\mathrm{I} \text { SS9 OII } d \varepsilon \tag{355}
\end{equation*}
$$

Then (348), (353), (354), and (355) give

$$
\begin{aligned}
& a=b_{0} /\left(\mathrm{I}-\varepsilon_{0}\right)+d a \\
& =20925923.7+1 \text { 1 SS9 OI I } d \varepsilon \text { feet } \\
& b=b_{0}+d b \\
& =
\end{aligned}
$$

and by changing ε_{0} from $1 / 295^{\circ} 5$ to I $/ 293^{\circ} 47$, we obtain finally

$$
\begin{align*}
& a=20926202+1 \text { I } 88901 \text { I de feet } \tag{356}\\
& b=20854895-9077539 d \varepsilon \text { feet }
\end{align*}
$$

For a flattening of $\mathrm{I}: 300$, (337) gives $d \varepsilon=-0.00007422$, and by (356) the corresponding equatorial and polar semidiameters of the Earth are

$$
\begin{align*}
& a=20925320 \text { feet } \tag{357}\\
& b=20855569 \text { feet }
\end{align*}
$$

Upon combining this new value of a with the adjusted parallaxes contained in Table XIII we find

$$
\begin{align*}
& \text { Mean distance from Earth to Sun }=92793663 \pm 58318 \text { miles } \tag{358}\\
& \text { Mean distance from Earth to Moon }=23885 \mathrm{I} \pm 2.719 \text { miles }
\end{align*}
$$

and these results are substantially the same as those appended to Table XIII, the discordance amounting to ten miles in the case of the Moon, and to only one-fifteenth of the probable error in the case of the Sum.

The most striking feature elicited by comparing Tables VI and XIII is the great diminution of the probable errors in the latter; and as that arises solely from the change in the flattening, and extends not only to the quantities in the table, but also to the appended masses derived from the equations (129), it seems desirable to inquire what value of the flattening would reduce these probable errors to a minimum. A rigorous solution of that question would be very laborious, but a fair approximation may be got by finding what value of ε would make the residuals in (185) a minimum. If v^{\prime} and $v^{\prime \prime}$ are the two values of any one of these residuals, given respectively in (196), (206), and (341), and corresponding to the flattenings ε^{\prime} and $\varepsilon^{\prime \prime}$, then the condition that that particular residual shall disappear may be written

$$
\begin{equation*}
0=v^{\prime}+\frac{v^{\prime}-v^{\prime \prime}}{\varepsilon^{\prime}-\varepsilon^{\prime \prime}} d \varepsilon \tag{359}
\end{equation*}
$$

and the resulting value of the flattening will be $\varepsilon^{\prime}+d \varepsilon$. The residuals v_{4} and v_{5} are independent of the flattening, but v_{1}, v_{2}, v_{3}, and v_{6} furnish the four observation equations

$$
\begin{aligned}
& 0=+0.07286^{\prime \prime}-12.8^{\prime \prime} d \varepsilon \\
& 0=-0.0053^{2}+57.5 d \varepsilon \\
& 0=-0.25222-2946.6 d \varepsilon \\
& 0=+0.10666+957.5 d \varepsilon
\end{aligned}
$$

from which we find, by the method of least squares

$$
\begin{equation*}
\varepsilon^{\prime}+d \varepsilon=\frac{1}{293.466}-0.00008790=\frac{1}{301^{\cdot} 24} \tag{360}
\end{equation*}
$$

It is not easy to decide how much weight should be attributed to this method of estimating ε, but the result certainly tends to strengthen Helmert's value from pendulum experiments, and our own from precession and nutation.

Doubtless more data are the first requisite for a satisfactory determination of the Earth's flattening, but in default thereof one resource yet remains, and we shall avail
ourselves of it in Section 27. Meanwhile a symbolic correction may be applied to General Clarke's geodetic value, by writing

$$
\begin{equation*}
\varepsilon=\mathrm{I} / 293.466+d \varepsilon \tag{361}
\end{equation*}
$$

and then every quantity in, and appended to, Table VI will take the form

$$
\begin{equation*}
x=x^{\prime}+\frac{x^{\prime}-x^{\prime \prime}}{\varepsilon^{\prime}-\varepsilon^{\prime \prime}} d \varepsilon \tag{362}
\end{equation*}
$$

where x is any one of the quantities in question, x^{\prime} and $x^{\prime \prime}$ are respectively the numerical values given for it in Tables VI and XIII, and ε^{\prime} and $\varepsilon^{\prime \prime}$ are the values of the flattening with which these tables were computed. As $\varepsilon^{\prime}=1 / 293^{\circ} 466$ 3, and $\varepsilon^{\prime \prime}=1 / 300$, equation (362) reduces to

$$
\begin{equation*}
x=x^{\prime}+13475\left(x^{\prime}-x^{\prime \prime}\right) d \varepsilon \tag{363}
\end{equation*}
$$

The resulting numerical expressions are appended, and by their aid the values of all the quantities in question can readily be found for any possible value of the flattening.

$$
\begin{aligned}
& d \varepsilon=\varepsilon-\mathrm{I} / 293.4663=\varepsilon-0.003407546 \\
& p=8.80976^{\prime \prime}+5.26^{\prime \prime} 11 \varepsilon \pm\left(0.00674^{\prime \prime}+16^{\circ} 17^{\prime \prime} d \varepsilon\right) \\
& \mathrm{P}=3422.65643^{\prime \prime}+810.79^{\prime \prime} d \varepsilon \pm\left(0.0+746^{\prime \prime}+114.40^{\prime \prime} d \varepsilon\right) \\
& \text { ? }=50.3575^{\prime \prime}+0.40^{\prime \prime} 11 \varepsilon \pm\left(0.00+15^{\prime \prime}+997^{\prime \prime} d \varepsilon\right)
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{Q}=124^{\circ} 96205^{\prime \prime}+100.12^{\prime \prime} d \varepsilon \pm\left(0.09746^{\prime \prime}+234.87^{\prime \prime}(l \varepsilon)\right. \\
& \mathrm{L}=6.51303^{\prime \prime}-112^{\prime} 79^{\prime \prime} d \varepsilon \pm\left(0.02197^{\prime \prime}+52^{\circ} 96^{\prime \prime} d \varepsilon\right) \\
& \alpha=20.45385^{\prime \prime}-10.78^{\prime \prime} d \varepsilon \pm\left(0.01506^{\prime \prime}+36.38^{\prime \prime} d \varepsilon\right) \\
& \theta=497.9909 t^{9}-254.27^{9} d \varepsilon \pm\left(0.36616^{8}+882.48^{8} d \varepsilon\right) \\
& \mathrm{V}=186335^{\circ} 99-13475 d \varepsilon \pm(59.117+142498 d \varepsilon) \\
& \text { Mass of Mercury = } \\
& \left.\begin{array}{l}
0.000000119477 \\
+0.000000310 d \varepsilon
\end{array}\right\} \pm\left\{\begin{array}{c}
0.000000024220 \\
+0.000000732 d \varepsilon
\end{array}\right. \tag{364}
\end{align*}
$$

Mass of Venus =

$$
\left.\begin{array}{c}
0.000002444953 \\
-0.000001738 d \varepsilon
\end{array}\right\} \pm\left\{\begin{array}{c}
0.00000001 \text { I } 24 \text { I } \\
+0.000000335 d \varepsilon
\end{array}\right.
$$

Mass of Eartlı $=$

$$
\left.\begin{array}{l}
0.000003056537 \\
\quad+0.000003423 d \varepsilon
\end{array}\right\} \pm\left\{\begin{array}{c}
0000000007043 \\
+0.000016965 d \varepsilon
\end{array}\right.
$$

Mass of Moon =

$$
0.0123157-0.2210 d \varepsilon \pm(0.0000421 \mathrm{I}+0.1015 d \varepsilon)
$$

Mean distance from Earth to Sun $=$

$$
92793504-54857000 d \varepsilon \pm(70993+170796000 d \varepsilon) \text { miles }
$$

Mean distance from Earth to Moon =

$$
238857-53900 d \varepsilon \pm(3.312+7991 d \varepsilon) \text { miles. }
$$

26.-MASS OF THE MOON FROM OBSERVATIONS OF THE TIDES.

The first determination of the Moon's mass was made by Newton in 1687 , from the tides, and other investigators have since employed the same method, but for more than 180 years it yielded no trustworthy result. Its failure was due to varions causes, both theoretical and practical, and although some of these were cleared up by La Place as early as 1818, there was little prospect of success until the recent application of larmonic analysis to the reduction of continuous observations of the tides, recorded by automatic gauges, and extending over long periods of time. An effort has been made to collect in the following list all the more important determinations of the Moon's mass which are based upon the method in question, but owing to the singular sparseness of bibliographic references in writings on that subject, it is difficult to estimate what degree of completeness las been attained.

Reciprocals of the Moon's Mass, determined from Observations of the Tides.

1687. Newton, from the tides before the mouth of the river Ayon, three miles below Bristol, England. (9, lib. 3,prop. 37 , cor. 4.)$39 \cdot 8$
1688. D1. Bernoulli. (5, p. 549.) 70°
1689. La Place, from the tides at Brest, France, ôbserved during the years 1807 to 1814 , inclusive. (348, p. 55.) $69 \cdot 3$
1690. La Place, from a rediscussion of the above observations at Brest. (7, T. 5, liv. I3, chap. 3 , ${ }^{2}$ io.) $74 \cdot 9$
1691. Lubbock, from the tides at London, England, observed during the years 1808 to 1826, inclusive. ($350,183 \mathrm{I}, \mathrm{p}$. 392.) $66 \cdot 7$
1692. Haughton, from the semi-diurnal tides on the coast of Ireland, observed during the year 185 I . (344, p. I30.) From the diurnal tides, during the same period. (344, p. 130.) 63. 95°
1693. Lubbock remarks in his paper on the lunar theory (Mem. Roy. Ast. Soc. 1861, vol. 30, p. 29) that the observations of the tides which he employed gave him a value "probably about $1: 67 \cdot 3$ " for the ratio of the mass of the Moon to the sum of the masses of the Earth and Moon. His value of the reciprocal of the Moon's mass must therefore have been 66.3 , which agrees with what he found from the tides at London, in 1831, so closely as to render it probable that they are the tides referred to.
1694. Haughton, from the semi-diurnal tides at Port Leopold, North Somerset, observed November, 1848, to July, 1849, inclusive. (345,1866, p. 655 .) $65^{\circ} 4$
From the diurnal tides during the same period. (345,1863, p. 253 .). 85.
1695. Haughton, from the semi-diurnal tides at Frederiksdal, Greenland, observed August, 1863, to August, 1864, inclusive. (345,1866, p. 642 .) $64 \cdot 6$
1696. Llaughton, from rhe semi-diurnal tides, observed at the following points on the coast of Ireland, during the year 1851. (346, p. 346.):
Bunown 69.1
Cahirciveen $64 \cdot 2$
Castletownsend $49^{\prime 2}$
Dunmore East 55°
Courtown 107.2
Kingstown $46 \cdot 3$
Donaghadee $35 \cdot$ I
Cushendall $21 \cdot 1$
Portrush $84 \cdot 6$
Rathmullan 717
Mean. $60 \cdot 4$
1697. Finlayson, from the mean range of the spring and neap tides at Dover, England, observed during the years 1861, 1864, 1865, and 1866 . (343, p. 272.) $87 \cdot 9$
1698. Ferrei, from observations of the tides at Boston, Mass., from July 1, 1847 , to July 1, 1866. (334, p. 85.) 78.6
1699. Ferret, from a rediscussion of the tides at Boston, Mass., July 1, I847, to July 1, 1866, with special reference to the Moon's mass. (335, p. 198.) 75^{11}
1700. Ferrel., from obscrvations of the tides at Brest, France, during the years 1812 to 1832 , inclusive. (336, p. 189.). 78.0
1701. Ferrel, from a second revision of his discussion of the tides observed at Boston, Mass., July 1, I847, to July 1, 1866. (336, p. 196.) $8 \mathrm{I} \cdot 7$

```
    f. 216.)
1S74. FekREL, from observations of the tides at I'ortandl lireakwater, England, durmg the years 1$51, IS57, ASm, amh
    and IS70. (3j6, p. 223.)
1S74. Ferrel, from obcervations of the tides at lort Point, Cal., during the threc years iS5S to 1861. (3.36, p. 22S.). 7(1)%
IS74. FERREL, from olservations of the tides at Karachi, India, during the three years iSGS to iS71. (336, p. 234.). 78.6
IS;S. Ferrfi., from obserwations of the tides made at Pulpit Cove, Penobscot liay, Maine, during the six years iS7o
    10 1575. (33s, p. 294.)
ISS2. Ferrel, from observations of the tides made at Iort Townsend, Wash., during the three years 187+ to IS76.
        (339, p.+4S.)
ISS2. Fekrer., from observations of the tides made at Astoria, Oregon, during the three years 1874 to 1S76. (339, 1).
    448.).
ISS2. Ferrmi, from observations of the tides made at ian Diego, Cal., during the three years 1S69 to iS71. (3.39,p.
    44S.).
ISS3. Ferrel, from observations of the tides made at Sandy Hook, N. J., during the six years ISj6 to iSSI, inclusive.
    (340. p. 251.)
SO:1
    833
77.2
    68.1
    SS.O
77•1
```

Long ago Airy showed why the Moon's mass can not be accurately determined from the mere ratio of the solar and lunar effects in the semi-mensual inequality of the tides,* but nevertheless many of the values recorded above have been obtained in that very way, and are therefore worthless. Those found by La Place's method, \dagger or by Ferrel's modification of it, are theoretically correct, at least for deep-water tides, but instead of confining ourselves to them, we shall compute many new values from the "Results of the harmonic analysis of tidal observations" which have been published by Major Baird and Professor Darwin. \ddagger

La Place's method of deducing the Moon's mass is not adapted for use with harmonic tidal constants. We shall therefore employ Ferrel's formule, and as much of the available data was collected by Sir Williay Thomson, Mr. Edward Roberts, Major A. W. Bard, R. E. and Professor G. H. Darwin, the various notations adopted by these gentlemen are exhibited in Table XIV. Ferrel used the letters A or a for the semi-range, and ε or e for the epoch of a tide, and distinguished the various classes of components by the subscript suffixes $\mathrm{I}, 2,3$, etc.; but for similar components occuring in the diumal ant semi-dimmal tides he used the same symbols. Thomson used the letters R and ϵ, respectively, for the semi-range and epoch of any component, distinguishing the various classes of components by the initials $\mathrm{S}, \mathrm{M}, \mathrm{O}, \mathrm{K}$, etc., and indicating their period by the subscript suffixes $\mathrm{I}, 2$, 3 , etc.; I indicating a diurnal component, 2 a semi-diurnal component, 3 a terdimmal component, and so on. Darwis used the same initials as Thonson to designate the various classes of tidal components, but his H and x are not identical with Ferrel's A and ε, and Thonson's R and ϵ. The semi-ranges and epochs of most of the tidal components are to a certain extent functions of the longitude of the Moon's node, and are therefore subject to small inequalities having a period of 18.6 years. The A's and ε 's of Ferrel and the R's and ϵ 's of Thomson are affected by these inequalities, but the H's and x 's of Darwin are very nearly free from them. In other words, the A's and ε 's of Ferrel and the R's and ϵ 's of Thomson belong strictly to the years during which they were observed, but the H's and r's of Darwin are reduced to what they would have been if the Moon

[^16]had remained always in the celestial equator, and they therefore correspond to the means of a series of observations extending over the entire period of 18.6 years, except in so far as they may be vitiated by accidental errors. In explanation of Table XIV it is only necessary to add that quantities on the same line have similar significations. For example, Ferrel's diurnal A_{1} and ε_{1} correspond to Thomson's R_{1} and ϵ_{1} of K_{1}, and to Darwin's H and π of ' K_{1}; and similarly for the quantities on the other lines.

Table XIV.-ATatation for Harmonic Analysis of the Tides.

Our object is to determine the mass of the Moon, and as that quantity affects only the ranges of the tidal components, and is without influence on their epochs, we shall have to deal exclusively with the H's, and not at all with the x 's. Our notation may therefore be abridged by using the initials of the various tides to denote their semi-ranges, and instead of H of S, H of M, H of O , etc., we shall write simply S, M, O, etc.

For the diurnal tidal oscillations of the great oceans, Professor Ferrel's expressions are*

$$
\begin{align*}
& \mathrm{K}_{1}= \mathrm{A}_{1} \\
& \mathrm{O}=(0.5306-13.1 \delta \mu)\left(\mathrm{I}+0.230 \mathrm{E}_{1}\right) \mathrm{A}_{0} \\
& \mathrm{P}= \mathrm{A}_{2}=0.3813\left(\mathrm{I}-0.230 \mathrm{E}_{1}\right) \mathrm{A}_{0} \tag{365}\\
& \mathrm{P}=(0.1730-13.6 \delta \mu)\left(\mathrm{I}+0.196 \mathrm{E}_{1}\right) \mathrm{A}_{0} \\
& \mathrm{~A}_{4}=0.084\left(1+0.231 \mathrm{E}_{1}\right) \mathrm{A}_{0} \\
& \mathrm{~A}_{5}=0.070\left(1-0.231 \mathrm{E}_{1}\right) \mathrm{A}_{0}
\end{align*}
$$

where $\mathrm{A}_{0}, \mathrm{E}_{1}$, and $\delta \mu$ are constants to be determined from the values of $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}$, etc., by the simultaneous solution of three or more of the equations. As the numerical values of A_{4} and A_{5} are not contained in Bard and Darwin's list of barmonic tidal constants, we shall neglect the last two equations of (365); but their loss is of little consequence on account of their small weight. By putting

$$
\begin{aligned}
m & =13.6 \mathrm{~K}_{1}-12.980-1.1 \mathrm{P} \\
2 a & =0.462+\mathrm{K}_{1}+5.529 \mathrm{O} \\
b & =0.6131 \mathrm{~K}_{1}+0.5851 \mathrm{O}-0.6930 \mathrm{P}
\end{aligned}
$$

the remaining equations of (365) give

$$
\begin{align*}
& \left.\mathrm{E}_{1}=-\frac{a}{b} \pm\left\{\frac{m}{b}+\frac{a^{2}}{b^{2}}\right\}\right\}^{2} \\
& \mathrm{~A}_{0}=\frac{0}{0.38 \mathrm{I} 3\left(\mathrm{I}-0.230 \mathrm{E}_{1}\right)} \tag{366}\\
& \delta \mu=0.04050-\frac{0.38 \mathrm{I} 3\left(\mathrm{I}-0.230 \mathrm{E}_{1}\right) \mathrm{K}_{1}}{\mathrm{I} 3.1\left(\mathrm{I}+0.230 \mathrm{E}_{1}\right) \mathrm{O}} \\
& \text { Mass of Moon }=0.01250+\delta \mu
\end{align*}
$$

Although this solution is in the form best adapted to give exact numerical results. it is too cumberous for general use, and we take advantage of the smallness of $\delta \mu$ to add another which is briefer and not appreciably less accurate:

$$
\begin{align*}
& \delta \mu=\frac{0.12230 \mathrm{~K}_{1}+0.013580-0.40504 \mathrm{P}}{9.61+36 \mathrm{~K}_{1}+1.513630-10.00000 \mathrm{P}} \\
& \mathrm{E}_{1}=\frac{\mathrm{K}_{1}-\mathrm{O}(1.39156-34.36 \delta \mu)}{0.230 \mathrm{~K}_{1}+\mathrm{O}(0.32006-7.90 \delta \mu)}=\frac{\mathrm{P}-\mathrm{O}(0.4537 \mathrm{I}-35.67 \delta \mu)}{0.230 \mathrm{P}+\mathrm{O}(0.08893-6.99 \delta \mu)} \tag{7}\\
& \mathrm{A}_{0}=\frac{0}{0.3813\left(1-0.230 \mathrm{E}_{1}\right)} \\
& \text { Mass of Moon }=0.01250+\delta \mu
\end{align*}
$$

For the semi-diumal tidal oscillations of the great oceans, Professor Ferrel gives the expressions*

$$
\begin{align*}
\mathrm{S}_{2} / \mathrm{M}_{2} & =\mathrm{R}_{1} \\
\mu / \mathrm{M}_{2} & \left.=\mathrm{R}_{2}=+0.4582-36.2 \delta \mu\right)\left(1+0.4255 \mathrm{E}_{2}\right) \\
\mathrm{K}_{2} / \mathrm{M}_{2} & =\mathrm{R}_{3}=(0.1256-3.2 \delta \mu)\left(1-0.4255 \mathrm{E}_{2}\right) \tag{368}\\
\mathrm{L}_{2} / \mathrm{M}_{2} & =\mathrm{R}_{4}=-0.0286\left(1+0.228 \mathrm{E}_{2}\right) \\
\mathrm{N} / \mathrm{M}_{2} & =\mathrm{R}_{5}=+0.1922\left(1-0.228 \mathrm{E}_{2}\right)
\end{align*}
$$

The second and fourth of these equations may be dismissed at once on account of their small weight, but there is a difficulty in deciding how the remaining three should be treated in order to get from them the most probable values of E_{2} and $\delta \mu$. The fundamental quantities $\mathrm{M}_{2}, \mathrm{~S}_{2}, \mathrm{~K}_{2}$, and N are not observed independently, but are each functions of the same observed quantities, namely, a series of heights recorded by a tide gauge, and therefore according to the theory of least squares it is the sum
of the squares of the corrections to the latter which should be made a minimum, sub)ject to the conditions of (368). But even if these heights were at hand the applicability of this process would be doubtful, because in the present case the larger errors probably do not follow the usual law of error. However, as the only practicable course is to deal with the derived functions $\mathrm{M}_{2}, \mathrm{~S}_{2}$, etc., our discussion had better be confined to them. If, on the one hand, we take the equations as they stand, and solve by the method of least squares, the results are likely to be affected by systematic errors, because all the absolute terms have been divided by the same fundamental quantity, namely, M_{2}, which is itself subject to error ; and if, on the other hand, we apply a symbolic correction to M_{2}, then we shall lave as many unknown quantities as there are equations, and the errors which should be distributed among all the fundamental quantities will he thrown upon M_{2} alone. Under these circumstances it is probably best to divide the third equation by the fifth, and thus we obtain the two equations

$$
\begin{align*}
& \mathrm{S}_{2} / \mathrm{M}_{2}=\mathrm{B}=(0.4582-36.2 \delta \mu)\left(\mathrm{I}+0.4255 \mathrm{E}_{2}\right) \\
& \mathrm{K}_{2} / \mathrm{N}=\mathrm{C}=\frac{(0.6535-16.6 \delta \mu)\left(\mathrm{I}+0.4599 \mathrm{E}_{2}\right)}{\mathrm{I}-0.228 \mathrm{E}_{2}} \tag{369}
\end{align*}
$$

in which each of the fundamental quantities occurs once, and only once. Here, as in (365), we give two solutions. The first is that which leads to the most exact numerical results. For it we put

$$
\begin{aligned}
m & =-16.05 \mathrm{I}-16.6 \mathrm{~B}+36.2 \mathrm{C} \\
2 a & =+14.211+7.634313-7.1495 \mathrm{C} \\
b & =+3.1409+35119 \mathrm{C}
\end{aligned}
$$

and then

$$
\begin{align*}
& \mathrm{E}_{2}=-\frac{a}{b} \pm\left\{\frac{m}{b}+\frac{a^{2}}{b^{2}}\right\}^{\frac{1}{2}} \\
& \delta \mu=0.01266-36.2+15.403 \mathrm{E}_{2} \tag{370}\\
& \text { Mass of Moon }=0.01250+\delta \mu
\end{align*}
$$

The second solution, which is briefer than the first and not appreciably less accurate, is as follows:

$$
\begin{align*}
& \delta \mu=\begin{array}{r}
0.09638 \mathrm{BC}+0.12704 \mathrm{~B}-0.12657 \mathrm{C}-0.004354 \\
3.23672 \mathrm{~B}-10.00000 \mathrm{C}-0.45492
\end{array} \\
& \mathrm{E}_{2}=\underset{0.228 \mathrm{C}+0.65349+16.65 \delta \mu}{\mathrm{C}-0.60054-7.66 \delta \mu}=\frac{\mathrm{B}-0.4582+36.2 \delta \mu}{0.19496-1540 \delta \mu} \\
& \text { Mass of Moon }=0.01250+\delta \mu \tag{371}
\end{align*}
$$

Professor Ferrel treats the equations (368) in a way which differs widely from that adopted above, and which is best explained by the following extract from his paper on the tides of Penobsent Bay:*

It is readily seen from an inspection of these equations that they can be satisfied only rery imperfectly for Pulpit Cove, within any determined ralues of $\delta \mu$ and E , and that they can be
much better satisfied by multiplying the first members of the equations hy an mbnown constant. This constant is introduced upon the hypothesis that the tidal components are diminished by the effect of friction which is as a higher power than the first power of the velocity, as I have at varions times explaned. Upon this hypothesis large tides are diminished by friction more than small ones in proportion to their amplitudes, and hence where there is one large component, as the mean lunar, and a number of much smaller ones, since the amplitules of the latter are obtained by analysis from the differences between the larger and smaller resultant tides, the smaller components are diminished more than the larger ones in proportion to their magnitudes, unless friction is as the first jower of the velocity:

Accordingly, Professor Ferrel multiplies the left-hand members of the first, third, and fiftlo equations of (368) by a constant which he calls r, * thus reducing them to the form

$$
\begin{align*}
& \left(\mathrm{S}_{2} / \mathrm{H}_{2}\right) c=\mathrm{R}_{1} c=(0.4582-36.2 \delta \mu)\left(1+0.4255 \mathrm{E}_{2}\right) \\
& \left(\mathrm{K}_{2} / \mathrm{M}_{2}\right) c=\mathrm{R}_{3} c=(0.1256-3.2 \delta \mu)\left(1+0.4599 \mathrm{~F}_{2}\right) \tag{372}\\
& \left(\mathrm{N} / \mathrm{M}_{2}\right) c=\mathrm{R}_{5} c=0.1922\left(1-0.22 \delta \mathrm{H}_{2}\right)
\end{align*}
$$

and he adds: "By the introduction of the constant c, or one equivalent to it, I have in all cases found that the observations are better represented by theory, and a better mass of the Moon is obtained, which indicates that there is an effect due to friction or some other cause which diminishes the amplitude of the tides."

If we put

$$
\begin{aligned}
m & =+3.2 R_{1}-36.2 R_{3}+16.027 R_{5} \\
2 a & =-0.7421 R_{1}+7.1495 R_{3}-14.191 R_{5} \\
b & =+0.3355 R_{1}-3.5119 R_{3}-3.136 R_{5}
\end{aligned}
$$

the general solution of (372) is

$$
\begin{align*}
\mathrm{E}_{2} & =-\frac{a}{b} \pm\left\{\begin{array}{l}
m \\
b
\end{array} \frac{\left.a^{2} b^{2}\right\}^{1}}{2}\right. \\
c & =1-\mathrm{F}=\frac{0.1922-0.04382 \mathrm{~F}_{2}}{\mathrm{R}_{5}} \tag{373}\\
\delta \mu & =0.01266-\frac{\mathrm{R}_{1}\left(0.1922-0.04382 \mathrm{~L}_{2}\right)}{\mathrm{R}_{5}\left(36.2+15403 \mathrm{~F}_{2}\right)}
\end{align*}
$$

Mass of Moon $=001250+\delta \mu$
or more conveniently, and with no real loss of accuracy,

$$
\begin{align*}
& \delta \mu=\frac{0.03652 \mathrm{~S}_{2}-0.12658 \mathrm{~K}_{2}-0.00435 \mathrm{~N}}{0.93051 \mathrm{~S}_{2}-10.00000 \mathrm{~K}_{2}-0.45492 \mathrm{~N}} \\
& \mathrm{~F}_{2}=\frac{0.19220 \mathrm{~S}_{2}-\mathrm{N}(0.45820-36.20 \delta \mu)}{0.04382 \mathrm{~S}_{2}+\mathrm{N}(0.19496-15.40 \delta \mu)} \tag{374}\\
& c=1-\mathrm{F}=\left(0.19220-0.04382 \mathrm{E}_{2}\right) \mathrm{M}_{2} \\
& \text { Mass of Moon }=0.01250+\delta \mu
\end{align*}
$$

The last solution shows that Professor Ferrel's process results in replacing i/ M_{2} by in indeterminate, $\mathrm{c} / \mathrm{M}_{2}$; and thus, instead of having four fundamental quantities

[^17]from which to find two unknowns, he has but three fundamental quantities from which to find three unknowns.

Table XV contains a series of corrections to the Moon's mass, deduced from tidal observations made in thirty-four different ports; namely, at Brest and Boston of Ferrel's list, and at all the stations named in Baird and Darwin's list of harmonic

Table XV.-Correetions to the Moon's. Mass, Iedueed from Observations of the Tides.

tidal constants where the observations extended over a period of two or more years, together with some where they were limited to a single year. The corrections given in the columns headed $\delta \mu^{\prime}, \delta \mu^{\prime \prime}, \delta \mu^{\prime \prime \prime}$ have been computed, respertively, by means of formulee (367) , (371), and (374), from Bankd and Darwin's harmonic constants:* and as the two last-mentioned formmla deal with the same'data, we have now to consider which of them should be preferred.

At St. Thomas the K_{2} and \mathbb{N} tides seem unknown, or at least they are not given in Bardd and Darwin's list. Rangoon is situated upon the eastern arm of the Irrawaddy River, at a distance of 21 miles from the sea; and Kidderpore is a suburb of Calcutta, on the Hooghly River, 80 miles from the sea, the width of the navigable channel for 10 miles below that point being only about 250 yards. These circumstances render it probable that the values of $\delta \mu$ found from the tides at St. Thomas, Rangoon and Kidderpore are untrustworthy, and accordingly we shall reject them. An examination of the remaining data reveals facts which may be tabulated thus:

Column	$\delta \mu^{\prime}$	$\delta \mu^{\prime \prime}$	$\delta \mu^{\prime \prime \prime}$		
Number of plus corrections	.		16	16	24
Number of minus corrections	.	.	${ }^{1} 3$	13	5
Sum of corrections $. ~ . ~ . ~ . ~ . ~$.	+488	$+\delta_{24}$	+3923	

If we divide each of these sums by 29 , and add the quotients respectively to 0.01250 , the resulting values of the Moon's mass will be $1: 78.9$, $1: 78.2$ and $1: 72.2$. The latter is so much too large as to place its erroneous character beyond donbt, and we therefore conclude that formula (371) is decidedly preferable to (374). The failure of (374) probably indicates that the height of the tides is influenced not so much by the direct effect of friction upon their amplitudes as by its indirect effect arising from the changes which it produces in the epochs of certain shallow-water components, which camot be separated from the deep-water components with which they are combined; \dagger and that hypothesis is further supported by the known fact that when the effects of friction and of the Earth's rotation can be regarded as of the second order, their effect upon the epochs of the oscillations is also of the second order, but upon the amplitudes it is of the third order only. \ddagger The great difference between the sums of the corrections in the cohmms $\delta \mu^{\prime}$ and $\delta \mu^{\prime \prime}$ is probably due to the circumstance that the diumal tides are affected by fewer shallow-water components than the semi-diurnal ones.

The wide range in the values of $\delta \mu^{\prime}$ and $\delta \mu^{\prime \prime}$ shows the imperfection of our present tidal theory, and Professor Ferrel thinks its improvement depends mainly upon the study of the shallow-water terms. He adds: is

With regard to the determination of the Moon's mass, from the resnlts so far as obtained the relations of the diurnal tides promise hetter suceess in the future than those of the semidiurnal tides. The diminal tides are not atfected by so many shallow-rater components, and it is probable that these can be determined from the analysis of the obserrations, since there are tro comparatirely quite large components with periods differing from those of any others, and hence can be determined hy analysis of the obserrations; and then from the theoretical relations
given in Schedule III the others cau be, at least approximately, determined, and the components of deep-water tides which they atfiect can be corrected for their effect. The relations of these corrected results, obtained from the analysis of the obserrations, should then agree with the theoretical relatires, and gire a correct mass of the Moon.

Instead of attempting such intricate and uncertain computations, we shall employ another method which is simpler and not less promising. It is evident from Table XV that the value of the Moon's mass given by the tides varies inegularly, not only from point to point along the coast, but also within rivers and large harbors, and even with respect to the diumal as distinguished from the semi-dimmal tidal components ; $\delta \mu^{\prime}$ and $\delta \mu^{\prime \prime}$ having the same sign at 15 places and opposite signs at 16 places. It is therefore highly probable that the cause of these variations may justly be regarded as an accidental one, whose effect will vanish from the mean of a series of observations made at a sufficient number of stations; and if so, the best mode of treating the corrections in Table XV will be to take the mean of those given in the fourth and fifth columns. By that method the result for each station will be $\frac{1}{2}\left(\delta \mu^{\prime}+\delta \mu^{\prime \prime}\right)$, as given in the last column of the table ; and then the question of weights arises. At first sight observations extending over a long period seem likely to be more exact than those limited to a single year, but in reality there is little difference between them, becanse the accidental errors at any station are generally small compared with those due to constant causes. The arithmetical mean will therefore be the most probable result, and after rejecting St. Thomas, Rangoon and Kidderpore, we have from the remaining 29 stations in the fourth and fifth columms

$$
\begin{align*}
& \delta \mu^{\prime}=+0.000168 \pm 0.000305 \tag{375}\\
& \delta \mu^{\prime \prime}=+0.000284 \pm 0.000348
\end{align*}
$$

Regarded as a single series, the 5δ corrections in the fourth and fifth columns give

$$
\begin{equation*}
\frac{1}{2}\left(\delta \mu^{\prime}+\delta \mu^{\prime \prime}\right)=+0.000226 \pm 0.000230 \tag{376}
\end{equation*}
$$

while the 31 corrections in the last column give

$$
\begin{equation*}
\frac{1}{2}\left(\delta \mu^{\prime}+\delta \mu^{\prime \prime}\right)=+0.000214 \pm 0.000183 \tag{377}
\end{equation*}
$$

As (377) contains corrections from Boston and Brest which are not included in (376), these two results are not strictly comparable, but doubtless the probable error of the former has been somewhat diminished by the circumstance that it is based upon the value of $\frac{1}{2}\left(\delta \mu^{\prime}+\delta \mu^{\prime \prime}\right)$ for each station, instead of upon the entire series of values of $\delta \mu^{\prime}$ and $\delta \mu^{\prime \prime}$. 'To estimate what probable error (377) would have had in the latter case, we may imagine the mumber of corrections in (376) increased from 58 to 62 while their individual accuracy remains unchanged, and thus we shall find

$$
\begin{equation*}
\pm 0.000230 \sqrt{ }(58 / 62)= \pm 0.000222 \tag{378}
\end{equation*}
$$

In order to ascertain whether any of the corrections are abnormally large Peirce's criterion was applied, and the limit for the rejection of one observation was found to be 0.00679 in forming (376), and 0.00370 in forming (377). All the corrections are therefore well within the limit, and none should be rejected. Nevertheless, it may be thonght that with the comparatively small number of observations available,
the final result is injurionsly affected by the larger corrections, and to test that theory all corrections greater than 0.00200 were arbitruily rejected from the last column of the table, after which (377) became

$$
\begin{equation*}
\frac{1}{2}\left(\delta \mu+\delta \mu^{\prime \prime}\right)=-0.000018 \pm 0.000146 \tag{379}
\end{equation*}
$$

Very likely (379) is nearer the truth than (377), but as no satisfactory reason can be assigned for rejecting any of the corrections, we shall adopt for $\delta \mu$ the value (377) with the probable error $(37 S)$ We therefore have as our final result from the tides

$$
\begin{align*}
\delta \mu & =+0.000214 \pm 0.000222 \\
\text { Mass of Moon } & =0.012714 \pm 0.000222=\frac{1}{78653 \pm 1374} \tag{38o}
\end{align*}
$$

The mass of the Moon employed in previous sections was derived frnm the lunar parallax, and if the probable error of the observed value of that quantity is taken to be $\pm 0.20274^{\prime \prime}$, as giren in Table VI, the resulting probable crror of the mass is ± 0000180 : whence it follows that the mass from the tides has only one-third less weight than that from the parallax.

27.-A MORE COMPREHENSIVE LEAST SQUARE ADIUSTMENT.

The discussion in Sections 25 and 26 shows that the flattening of the Earth, and the mass of the Moon from the tides, should be included in the least square adjustment. and we have now to develop the equations necessary for that purpose.

For the adjustment of the flattening a symbolic correction to its observed value must be introduced in the conditional equations, and we shall do that by the indirect method employed on page in i, because any other process would entail needless complications. The requisite numerical data corresponding to the two values of ε used on page 111 are given in Table XVI; those for $\varepsilon^{\prime}=1 / 293^{\circ} 5$ having been collected from pages

Table XVI.-(uantities employed in forming the Conditional Equations (3s:).

ह	1: 293.4663	1:300.000 0
8^{2}	$0.006 \mathrm{So}_{3} 4810$	0.0066555556
a	20926202 feet.	20925320 feet.
! 35.3 .	$3.256 \mathrm{~S}_{7} 2$ feet.	$3.256 S_{31}$ feet.
μ^{2}	$0.9977+2+82$	0.99779132
$\sigma \sqrt{\frac{1}{3}}$	0.0023104615	$0 \cdot 0023103361$
L.og. coefficient of ist equation	$2 \cdot 78+9932 \cdot 2$	$2 \cdot 78+9$ SIS S
2 2d equation	$5 \cdot 303124$ S -- 10	$5 \cdot 30$ 1 124S-10
3 d equation	+6SI 9624-10	4.681 9624-10
fth equation	8.9124516 .0	$8 \cdot 9124633 \cdot 1$
$5^{\text {th }}$ equation	75260362.0	7.526 0178.9
	$216236 \cdot 648$	$216253 \cdot 60$
Coefficients of 6th equation	$3757+4492$	$3757+466$
	S07 952.643	SoS or5.9S
Log. coefficient of 7 th equation	$4.6650707 \cdot 1-10$	$4.6650366 \cdot 5-10$

$57,61,63,105$, and 106 , and those for $\varepsilon^{\prime \prime}=1 / 300$ having been specially computed. The coefficients in the second column of the table agree with those of the equations (185), both having been computed with the value ε^{\prime} of the flattening; but the coefficients in the third column do not agree with those of the equations (338), although both were computed with the value $\varepsilon^{\prime \prime}$ of the flattening. The difference arises from the circumstance that in (338) the equatorial semi-diameter of the Earth is regarded as independent of the flattening, while in Table XVI that assumption is abandoned and a has been found from (356), with $d \varepsilon=1 / 300-1 / 293.4663=-0.000074213$ Then e^{2}, ρ^{2}, and $l_{35 \cdot 3}$ were found from (326), (7), and (323), and the remaining quantities from (152), (153), (162), (181), and (183).

For the direct adjustment of the Moon's mass it is only necessary to modify the numerical coefficient of (157), and to inchude the corrected expression among the conditional equations. It is the last of the group (382).

If now, in accordance with (361), we put

$$
\begin{equation*}
d \varepsilon=\varepsilon-1 / 293.4663=\varepsilon-0.003407546 \tag{381}
\end{equation*}
$$

and let x represent any one of the coefficients in Table XVI, then the numerical values given for that coefficient in the second and third columns of the table will be respectively x^{\prime} and $x^{\prime \prime}$, and their substitution in (363) will give the general expression for x in terms of $d \varepsilon$. In that way the following set of conditional equations for the more compreliensive least square adjustment was obtained:

$$
\begin{aligned}
& \text { o or } v_{1}=p-[278499322+0.1528 d \varepsilon]\left(\frac{\mathrm{E}}{\mathrm{I}+\mathrm{M}}\right)^{\frac{1}{3}} \\
& \text { o or } v_{2}=p-[5.3031248-10] \mathrm{PQ} \frac{\mathrm{I}+\mathrm{M}}{1-M} \\
& \text { o or } v_{3}=p-[4.6819624-10] \mathrm{PL}^{\mathrm{I}}{ }_{\mathrm{M}}^{\mathrm{M}} \\
& \text { O or } v_{4}=p-\frac{[891248 \mathrm{I} 60+\mathrm{O} 2464 d \varepsilon]}{\mathrm{V} \theta} \\
& \text { o or } v_{5}=p-\frac{[7.52603620+0.2467 d \varepsilon]}{\mathrm{V} \alpha} \\
& \text { O or } v_{6}=\left\{\begin{array}{c}
1-(216236.65-228400 d \varepsilon) \sin ^{3} \mathrm{P} \\
3.7574449-0.02291 d \varepsilon-(807952.64-853360 d \varepsilon) \sin ^{3} \mathrm{P}
\end{array}\right\}
\end{aligned}
$$

Proceeding as in Section 21, we have next to differentiate these equations with respect to all the quantities expressed symbolically, and in doing so it must be remembered that (204) and (70) require that when E becomes $\mathrm{E}+d \mathrm{E}$, 2 shall become 2-3 $776^{\prime \prime} d \mathrm{E}$, and when ε becomes $\varepsilon+d \varepsilon, \mathrm{P}$ shall become $\mathrm{P}+5062^{\prime \prime} d \varepsilon$. The results are

$$
\begin{align*}
& \mathrm{o}=v_{1}+d p+\frac{p}{3(1+\mathrm{M})} d \mathrm{M}-\frac{p}{3 \mathrm{E}} \mathrm{E}^{d \mathrm{E}-0.3525 \mu \cdot d \varepsilon} \\
& 0=v_{2}+\left(l_{p}-\frac{2 p}{1-\mathrm{M}^{2}} d \mathrm{M}-{ }_{\mathrm{p}}^{p}\left(d \mathrm{P}+5062^{\prime \prime} d \varepsilon\right)-{ }_{Q}^{p} d \mathrm{Q}\right. \\
& 0=v_{3}+\left(l_{p}\right)+\frac{p}{M+\lambda I^{2}}\left(d \mathrm{M}-\frac{p}{P^{\prime}}\left(d \mathrm{P}+5062^{\prime \prime}(d \varepsilon)-\frac{p}{\mathrm{~L}}, l \mathrm{l} .\right.\right. \\
& 0=v_{4}+d p+\frac{p}{\mathrm{~V}} d \mathrm{~V}+\frac{p}{\theta} d \theta-0.5678 p \cdot d \varepsilon \tag{383}\\
& 0=v_{5}+d p+\frac{p}{\mathrm{~V}} d \mathrm{~V}+\frac{p}{\alpha} d \alpha-0 .{ }_{5} 678 p \cdot d \varepsilon
\end{align*}
$$

$$
\begin{aligned}
& +3 \operatorname{arc} 1^{\prime \prime}\left(z^{3}-[0.57246] d\right) \frac{\sin ^{2} \mathrm{P} \cos \mathrm{P} \cdot d \mathrm{P}}{[5.23996-10]-[0.57246] \sin 1^{3} \mathrm{P}} \\
& 0=v_{7}+d \mathrm{M}+3 \operatorname{arc} \mathrm{I}^{\prime \prime} \cot \mathrm{P}(\mathrm{I}+\mathrm{M}) d \mathrm{P} \\
& +\left(3 \text { are } \mathrm{I}^{\prime \prime} \cot \mathrm{P}_{5} 062^{\prime \prime}-\mathrm{I} 0568\right)(\mathrm{I}+\mathrm{M}) \text { d } \varepsilon
\end{aligned}
$$

To secure the utmost accuracy in the subsequent computations, the coefficients in (383) should be reduced to numbers with values of the quantities involved midway between the observed and adjusted ones. The following were used, and they fulfill the required condition quite approximately :

$p=8.809^{\prime \prime}$	$\overrightarrow{\mathrm{I}}=9.224^{\prime \prime}$	$\alpha=20.460^{\prime \prime}$	$\mathrm{V}=186342$
$\mathrm{P}=3422.67$	$\mathrm{Q}=125^{2.20}$	$\theta=497.5^{\circ}$	$\mathrm{M}=0.012520$
$z=50.35^{\circ}$	$\mathrm{L}=6.518$		$\mathrm{E}=0.000003030750$

Their substitution in (383), and the addition of the appropriate v to each equation, gave rise to the following expressions:

$$
\begin{align*}
& 0=v_{1}+d p+[0.4624] d M-[5.9863] d \mathrm{E}-[0492 \mathrm{I}] d \varepsilon \\
& \mathrm{o}=v_{2}+d p-[\mathrm{I} .2459] d \mathrm{M}-[7.4106-10] d \mathrm{P}-[8.8473-\mathrm{IO}] d \mathrm{Q}-[1.1149] d \varepsilon \\
& 0=v_{3}+d p+[2.8+19] d \mathrm{M}-[74106-10] d \mathrm{P}-[0.1308] d \mathrm{~L}-[11149] d \varepsilon \\
& 0=v_{4}+(l)+[5.6746-10] d \mathrm{~V}+[8.248 \mathrm{I}-\mathrm{IO}] d \theta-[0.6991] d \varepsilon \tag{384}\\
& 0=v_{5}+d p+[56746-10] d \mathrm{~V}+[9.6340-10] d \alpha-[0.6991] d \varepsilon \\
& 0=v_{6}+d \mathfrak{d}-[9.2628-10] d \&+[9.3169-10] d \mathrm{P}+[3.76+1] d \mathrm{E}+\left[\begin{array}{lll}
2 & 9 & 133
\end{array}\right] d \varepsilon \\
& 0=v_{7}+d \mathrm{M}+[6.9481-\mathrm{IO}] d \mathrm{P}+[0.5343] d \varepsilon
\end{align*}
$$

The equations (384) were employed to eliminate seven of the twelve unknowns which they contain, and in (385) each of the twelve is expressed in terms of the remaining five, namely, in terns of $d p, d \mathrm{P}, d \mathcal{E}, d \alpha, d \varepsilon$, and known quantities. Adopting the system of weights given by (188) for the probable errors in (392), and imagining the symbols in the first column of (385) to be replaced by zeros, the weighted normal equations (386) were formed in the usual way; but in them the differentials are inclosed in parentheses to indicate that they have now become corrections to the observed quantities. The solution of the normals gave the values of ($d p$), $(d \mathrm{P}),(d \geq),(d \alpha)$, and $(d \varepsilon)$ which are contained in (387), and by substituting these values in (385) all the other corrections in (387) were obtained.
Solution of the Equations (384) in Terms of $d p, d \mathrm{P}, d \mathfrak{E}, d a$, and $d \varepsilon$.

I
∞

	i_{1}	v_{2}	v_{3}	3^{\prime}	7^{\prime}	v_{6}	${ }^{2} 7$
$(d \rho)=$	-0.066 7566	-0.027 01846	-0.011 20090	-0.0435084	-0.632757	-0.030 4940	+ 7118375
(dP)	-0.0316037	-0.0231800	+0.579351	-0.031860	-0.463239 1	-0.452 123	- 410.801
(dき ${ }^{\text {d }}$) $=$	-0.000 08375	-0.000 08922	+0.00201865	-0.000 08883	-0.001 29194	+0.006 31855	14432402
(d) ${ }^{\text {d }}$ (+0.009 32431	+0.009 93175	-0.224 728	+0.009 88951	+0.143828	-0.703 395	+ 159464
$(d Q)=$	--0.961547	+ 1382060	+0.0344193	-0.626 788	-9.115581	-0.682 535	+ 215117
$(d \mathrm{~L})=$	-0.01681747	+0.001 38030	+0.239446	-0.01103948	-. 160547	+0.619810	- 159.626
(da)	+0.1361482	+0.05508365	+0.02417001	+ 0.1068890	-0.768 228	+0.0597282	- 15.5913
(dA)	$+3.310580$	+1.339414	+0.587718	53.8819	$+\quad 3780076$	+1442352	379119
$(d \mathrm{~V})=$	+ 173.2807	+ 69.23114	+ 30.3775	- 53.5055	- 777725	+ 75.06882	- 1959560
$(d \mathrm{E})=$	$+963426 \times 10^{-12}$	- 27740×10^{-12}	14823×10^{-12}	- 44768×10^{-12}	-651082×10^{-12}	-26962×10^{-12}	+6735644 $\times 10^{-12}$
$(d \mathrm{M})=$	$+0.000063053$	+0.000 041367	- 0.000 952756	+0.0c0 0.40956	+0.000 595648	+0.001 24304	$0 \cdot 324036$
$(d \varepsilon)=$	-0.000 010 230	- 0.000 006 078	+0.000 128182	-0.000003707	-0000 053938	- 0.000 245904	-0.091004 4

As a preliminary step toward finding the probable errors of the adjusted quantities, we substitute in (387) the values of v_{1}, v_{2}, v_{3}, etc., from (384), and thus obtain the equations (388), which are to be read in the same way as those on page 67 . Then, by the process described on page 71, and with the probable errors of the observed quantities from (392), the results given in Table XVII were deduced.

Reverting now to the flattening of the Earth, there can be little doubt as to what the results are from the geodetic arcs, precession and nutation, and perturbations of the Moon ; and for the pendulum experiments Helmert's reduction seems best, partly because it is based upon more data than any other, and partly in consequence. of the discussion on page iro. Accordingly, the following observed values of ε, from pages 5, 97,95, and 102, are the only ones to be considered:

Method of determination.	厄
Geodetic arcs, Clarke	1:293.47 $=0.003407503$
Pendulum experiments, Helmert	1:299.26 $=0.003341576$
Precession and nutation	1 : $29767=0.003359425$
Perturbations of the Moon	I : $294093=0.0033906$

Equations Åo (358).

	Logarithmic coefficients for compating--					
	(d p $)$	(dP)	(d)	(d)	(dQ)	(dL)
$(d \rho)$	$+9.8928-\mathrm{I}^{0}$	-8.469 4-10	6.6674	+ $877139-10$	-0.4985	-8.7195-10
(d1)	$-6.1681-10$	+9.6625-10	-5.5403-10	$+7.5863-10$	$-8.1348-10$	$+8.1365-10$
(da)	$-7.7470-10$	$-8.9180-10$	$+7.0634-10$	-91100-10	$-9.0969-10$	$+9.0550-10$
(dतl)	+8.4842-10	$+9.655-10$	$-7.8006-10$	+9.847 2 - 10	+9.834-10	-9.792 3-10
(dQ)	$-7.2790-10$	-7.2124-10	-4.7978-10	+ 6.8443 - 10	$+9.9878-10$	$+5.9873-10$
(dL)	-8.180 - 10	$+9.8937-10$	$+74358-10$	-9.482 4 - 10	$+8.6676-10$	$+9.5100-10$
(da)	+9.435 $2-10$	$+9.2998-10$	$+6.7452-10$	-8.7918--10	$+0.5938$	$+8.8396-10$
(dfi)	$+6.8867-10$	+6.7513-10	+ $4 \cdot 1967-10$	-6.2433-10	$+8.045=10$	$+6.2910-10$
(dV)	$+5.5047-10$	+5.3693-10	$+2 \cdot 8147-10$	-4.8613-10	+6.6633-10	$+4.9091-10$
(dE)	-4.809 6	-4.447 I	-2.0713	+4.1180	$-5.967+$	-4.2988
(dㄱI)	+9.5011 - 10	$+0.8982$	$+8.4529-10$	-0.499 6	+0.8584	-0.825 1
(de)	-0.5678	$+3.2506$	94068 - 10	+1.4531	-1.6844	+16113
$\begin{aligned} & \stackrel{y}{0} \\ & \stackrel{y}{E} \\ & E \end{aligned}$	Logarithmic coefficient. for computing-					
	(da)	(dd)	(dV)	(${ }^{\text {d }} \mathrm{E}$)	(da1)	($d_{\text {c }}$)
(19p)	+9.6493-10	$+1.035=$	$+2.7469$	3.3522-10	$+6.3258-10$	$5.7342-10$
(dP)	$+72172-10$	$+8.603 \mathrm{x}-10$	$+0.3165$	-0.6933-10	$+54367-10$	$+6.1209-10$
(d)	$+8.0389-10$	+9.4248-10	$+1.1382$	-1.6935-10	$+6.3573-10$	-5.6537-10
(dき)	$-8.7762-10$	-0.1621	$-1 \cdot 8755$	$+2.4308-10$	-7.0945-10	$+6.3909-10$
(dQ)	+ $7.5883-10$	+8.974 $2-10$	$+0.6876$	- 1.290 4-10	$+4.4640-10$	$-3.6311-10$
(${ }^{\text {L } \mathrm{L} \text {) }}$	+8.5141-10	$+9.9000-10$	$+1.6133$	$-2.3017-10$	$-7 \cdot 1098-10$	$+6.2386-10$
(da)	+9.5195-10	-1.2115	+ 2.5248	$+3.4476-10$	$-6.4090-10$	$+53659-10$
(dif)	-7.2770-10	+9.9795-10	+9.9765-10	+0.899 1-10	-3.860 $4-10$	$+2.8171-10$
(d)	$+54950-10$	+6.8809-10	+8.5943-10	$+9.5171-20$	-2.478 5-10	+1435 4-10
$(d \mathrm{E})$	$+51192$	$+6.5051$	+8.2239	+ 9.970 $2-10$	+1.7314	-0.9286
($d \mathrm{M}$)	-9.798 1 - 10 .	- 1.1840	-2.900 8	$+3.4501-10$	+9.994 $2-10$	$+7 \cdot 2689-10$
($d \varepsilon$)	+0.4125	+17994	$+3.5125$	- $43034-10$	$+8.9156-10$	+9.711 1 - 10

Table XVII.-Computation of the Constants requircel for finiting the Probable Errors of the Arljusted ?

For use in the least square adjustment we adopt the arithmetical mean of these results, with an assumed probable error equal to half the difference between the greatest and least, namely:

$$
\begin{align*}
\varepsilon & =0.003374785 \pm 0.000032964 \tag{389}\\
& =1: 296.315^{2} \pm 2.8946
\end{align*}
$$

The substitution of (389) in ${ }^{\circ}\left(3 \delta_{1}\right)$ gives

$$
\begin{equation*}
d \varepsilon=-0.000032761 \tag{390}
\end{equation*}
$$

whence, by (70) and (75)

$$
\begin{equation*}
\mathrm{P}=3423^{\circ} \mathrm{O} 8^{\prime \prime}+5062^{\prime \prime} d \varepsilon=3422^{\circ} 914 \mathrm{I}^{\prime \prime} \pm 0.121^{\prime} \tag{391}
\end{equation*}
$$

The values of the observed quantities employed in the more comprenensive least square adjustment are those given in (143), (391), (89), (90), (66), (67), (91), (92), (101), (132), (380), and (389), all of which are collected in (392) for convenience oif reference.

$$
\begin{align*}
& p=8.834^{\prime \prime} \pm 0.0086^{\prime \prime} \\
& P=3422.914164^{\prime \prime}+5062^{\prime \prime} d \varepsilon \pm 0.121^{\prime \prime} \\
& \mathbb{Z}=5035^{\prime \prime} 6^{\prime \prime}-31716^{\prime \prime} d \mathrm{E} \pm 0.00248^{\prime \prime} \\
& d=99^{\prime 2} 331^{\prime \prime} \pm 0.0112^{\prime \prime} \\
& \mathrm{Q}=125^{\circ} 46^{\prime \prime} \pm 0.35^{\prime \prime} \\
& \mathrm{L}=6.514^{\prime \prime} \pm 0.016^{\prime \prime} \\
& \alpha=20.466^{\prime \prime} \pm 0.011^{\prime \prime} \\
& Q=4970^{\prime \prime} \pm 1.02^{8} \\
& \mathrm{~V}=186347 \pm 36 \text { miles } \\
& \mathrm{E}=0.000003005097 \pm 0.000000010056 \\
& \mathrm{M}=0.012714 \quad \pm 0.000222 \\
& \varepsilon=0.003374785 \pm 0.000032964
\end{align*}
$$

The adjustment was effected as follows:
I. To allow for the change in the flattening from $1: 293.5$ in (382) to $1: 2963$ in (392), the corrected conditional equations (393) were computed from (382) ly substituting therein the numerical value of $d \varepsilon$ from (390).
2. The residuals, (394), were found by substituting the observed values, (392), in the corrected conditional equations, (393).
3. The corrections by adjustment, (395), were found by substituting the residuals (394) in the formulee (387).
4. The correctness of all the numerical processes involved in passing from (382) to (395) was checked by the well-known relation

$$
\begin{aligned}
{[p m n] } & +100[(n n](d \varepsilon)+[l n](d p)+0 \cdot 10[c n](d \mathrm{P}) \\
& +[d n](d \underline{2})+[e n](d \alpha)-[p v v]=0
\end{aligned}
$$

where $[\mathrm{pmn}]$ is the sum of the weighted squares of the absolute terms in (385); [an], $[b n],[\mathrm{cn}],[d n],[\mathrm{m}]$ are the absolute terms in (386); and [pvv] is the sum of the weighted squares of the corrections by adjustment in (395). The result of the check is given in (396).
5. The incompletely adjusted quantities, (397), were found by adding the corrections (395) to the observed quantities (392).

Corrected Conditional Eiquations.

$$
\begin{align*}
& \text { oor } c_{1}=p-[2.7849882\lrcorner\left(\frac{\mathrm{L}}{\mathrm{I}+\mathrm{M}}\right)^{\frac{1}{3}} \\
& \text { onr } r_{2}=1 \text { - [5.3031248-10]PQ } \begin{array}{l}
\mathrm{I}+\mathrm{M} \\
\mathrm{I}-\mathrm{M}
\end{array} \\
& \text { oor } v_{3}=p-[4.6819624-\mathrm{IO}] \mathrm{PL}_{\mathrm{I}}^{\mathrm{I}}+\mathrm{M} \\
& \text { o or } v_{4}=p-\frac{[8.9124735]}{\mathrm{V} \theta} \tag{393}\\
& \text { oor } v_{5}=p-\frac{[7.5260281]}{\mathrm{V} \alpha} \\
& \text { o or } v_{6}=d-z\left\{\begin{array}{c}
1-21624413 \sin ^{3} \mathrm{P} \\
3.7574457-807980.60 \sin ^{3} \mathrm{P}
\end{array}\right\} \\
& \operatorname{oor} v_{7}=1+M-\frac{[4.66505568-10]}{\sin ^{3} \mathrm{P}}
\end{align*}
$$

First set of Residuals.

$$
\begin{array}{ll}
v_{1}=+0.075184^{\prime \prime} & v_{5}=+0.030149^{\prime \prime} \\
v_{2}=-0.018582 & v_{6}=+0.079261 \\
v_{3}=+0.294925 & v_{7}=+0.000662 \tag{394}\\
v_{4}=+0.007374 &
\end{array}
$$

First Approximation to the Corrections by Adjustment.
$\left(d_{l}\right)=-0.02487956^{\prime \prime}$
$(d \alpha)=-0.0116192^{\prime}$
$(d P)=-0.15306762$
$(d \theta)=+1.00381+53^{3}$
$(d \mathfrak{Z})=+0.00010367$
$\left(d V^{\top}\right)=-10 \cdot 16388$ miles
$(d \mathfrak{d})=-0.01$ I 53896
$(d \mathrm{E})=+0.000000050940$
$(d Q)=-0.51009+79$
$(d \mathrm{IL})=-0.000374748$
$(d \mathrm{~L})=+0.00786133$
$(d \varepsilon)=-0.0000+424841$

First Approximation to the Adjusted Quantities.

$$
\begin{array}{ll}
p=8.809120^{\prime \prime} & \alpha=20.454380^{\prime \prime} \\
\mathrm{P}=3422.537113 & \theta=498.004^{8} \\
z=50.357088 & \mathrm{~V}=186336.84 \text { miles } \tag{397}\\
d=9.221561 & \mathrm{E}=0.0000030560 .37 \\
\mathrm{~d}=124.94991 & \mathrm{M}=0.01233925 \\
\mathrm{~L}=6.521861 & \varepsilon=0003330537
\end{array}
$$

6. By substituting the value of ε from (397) in (381), the corresponding value of $d \varepsilon$ was found to be -0.000077009 , and by substituting that in (382) the corrected conditional equations (398) were obtained.
7. When the quantities (397) were substituted in the conditional equations (398), they gave rise to a second set of residuals (399), thus showing the adjustment to be incomplete. (396) proves that no error exists in any of the numerical operations, and it is easily seen that these residuals arise from the neglect of terms of the second order in forming the differential equations (383).
8. The better adjusted quantities (400) were obtained by substituting the residuals (399) in the formulæ (387), and adding the corrections so found to the quantities (397).
9. By substituting the value of ε from (400) in (38 r), the corresponding value of $d \varepsilon$ was found to be -0.000076492 , and by substituting that in (382), the corrected conditional equations (401) were obtained.
10. A third set of residuals, (402), was found by substituting the quantities (400) in the conditional equations (401).

Second set of Corrected C'onditional Equations.

$$
\begin{align*}
& \text { o or } r_{1}=11-[2 \cdot 78+981+5]\left(\frac{\mathrm{E}}{1+11}\right)^{\frac{1}{3}} \\
& \text { o or } v_{2}=1 \text { - }[5.3031248-10] \mathrm{PQ}^{1}+\mathrm{M} \\
& \text { oor } v_{3}=11-[4.68 \mathrm{I} 9624-10] \mathrm{PL} \frac{\mathrm{I}}{\mathrm{I}} \mathrm{M} \\
& \text { o or } v_{i}=11-\frac{[8.91246262]}{\operatorname{Vo}} \tag{398}\\
& \text { oor } v_{5}=11-\frac{[7.52601720]}{V \alpha} \\
& \text { Oor } v_{6}=d-d\left\{\begin{array}{c}
1-21625+24 \sin ^{3} \mathrm{P} \\
3.757+467-808018.36 \sin ^{3} \mathrm{P}
\end{array}\right\} \\
& \text { o or } v_{7}=1+M-\left[\begin{array}{c}
4.66503537-10] \\
\sin ^{3} \mathrm{P}
\end{array}\right.
\end{align*}
$$

Second set of liesiduals.

$$
\begin{array}{ll}
v_{1}=+0.000140^{\prime \prime} & v_{5}=+0.000008^{\prime \prime} \\
v_{2}=+0.000107 & v_{6}=+0000118 \tag{399}\\
v_{3}=+0.0043^{22} & v_{7}=+0.00000006
\end{array}
$$

$v_{1}=+0.000030$
Second Apmroximation to the Adjusted Qumentitics.

$$
\begin{array}{ll}
p=8 \cdot 809050^{\prime \prime} & \alpha=20.454513^{\prime \prime} \\
\mathrm{P}=3422^{\prime} 54^{21} 44 & 0=498.005981^{8} \\
c=50357096 & \mathrm{~V}=186337.004 \mathrm{miles} \\
\mathrm{~d}=\quad 9.220520 & \mathrm{E}=0.000003056095 \\
\mathrm{Q}=124^{\circ} 951244 & \mathrm{M}=0.012335279 \\
\mathrm{~L}=6.522956 & \varepsilon=0.003331054
\end{array}
$$

Thirl set of Corrected Conlitional Equations.

$$
\begin{aligned}
& \text { oor } v_{1}=p-\left[\begin{array}{ll}
2 & 78498153
\end{array}\right]\left(\frac{\mathrm{E}}{\mathrm{I}+\mathrm{M}}\right)^{\frac{1}{3}} \\
& \text { o or } v_{2}=p-[5.3031248-10] \mathrm{PQ} \frac{\mathrm{I}+\mathrm{M}}{\mathrm{I}-\mathrm{M}} \\
& \text { oor } v_{3}=p-[4.6819624-10] \mathrm{PL} \frac{\mathrm{I}+\mathrm{MI}}{\mathrm{M}} \\
& \text { o or } v_{4}=p-\frac{[8.91246275]}{\mathrm{V} \theta} \\
& \text { oor } v_{5}=p-\frac{[752601733]}{\mathrm{Va}} \\
& \text { o or } v_{6}=d-d^{2}\left\{\begin{array}{c}
1-216254.12 \sin ^{3} \mathrm{P} \\
3.7574467-808017.92 \sin ^{3} \mathrm{P}
\end{array}\right\} \\
& \text { oor } v_{\overline{7}}=1+\mathrm{M}-\frac{[4 \cdot 66503561-10]}{\sin ^{3} \mathrm{P}}
\end{aligned}
$$

Third set of Residuals.

$$
\begin{array}{ll}
v_{1}=+0.000001^{\prime \prime} & i_{5}=0.000000^{\prime \prime} \\
v_{2}=+0.000001 & v_{6}=-0.000019 \\
r_{3}=-0.000040 & i_{7}=-0.000000034
\end{array}
$$

$v_{4}=0.000000$
Thirel Apmoximation to the Adjusted Qunentities.

$$
\begin{array}{ll}
p=8 \cdot 809051^{\prime \prime} & \alpha=20.45+512^{\prime \prime} \\
\mathrm{P}=3422.542157 & 0=498.005947^{8} \\
\dot{d}=50.357096 & \mathrm{~V}=186337002 \text { miles } \\
\mathrm{l}=9.220537 & \mathrm{E}=0.000003056097 \\
\mathrm{Q}=124.951261 & \mathrm{M}=0.012335305 \\
\mathrm{~L}=6.522940 & \varepsilon=0.003331057
\end{array}
$$

11. The finally adjusted quantities, (403), were obtained by substituting the residuals (402) in the formulæ (387), and adding the corrections so found to the quantities (400).
12. From (403) and (381) the value of $d \varepsilon$ was found to be -0.000076489 , and the resulting conditional equations from ($3 S_{2}$) were sensibly the same as (401).

I3. The substitution of the quantities (403) in the conditional equations (40r) gave the final residuals (404), which show that the adjustment is sufficiently complete.

Final Residuals.

$$
\begin{array}{ll}
v_{1}=0.000000^{\prime \prime} & v_{5}=+0.000000^{\prime \prime} \\
v_{2}=+0.000000 & v_{6}=+0.000006 \tag{404}\\
v_{3}=+0.000001 & v_{7}=+0.000000003 \\
v_{4}=-0.000000 &
\end{array}
$$

The data and results of the computation outlined in (393) to (404) are given in ''able XVIII, but it yet remains to explain how the probable errors attached to the various quantities were derived. Putting $r^{\prime \prime}$ for the probable error assumed for a quantity of weight unity in equation (iSS), m for the number of observation equations in (385), n for the number of unknowns they contain, and [pvo] for the sum of the weighted squares of the corrections by adjustment, we have in accordance with the procedure described on pages 70 and 71

$$
\begin{equation*}
q=\frac{0.67449}{r^{\prime \prime}} \sqrt{\left(\frac{[p v v]}{m-n}\right)} \tag{405}
\end{equation*}
$$

With $r^{\prime \prime}=0.0 \mathrm{I}, m=\mathrm{I} 2, n=5$, and the values of p and v from (385) and the third column of Table XVIII, (405) gives $q=1.409 \mathrm{I}$. The probable errors in Table XVIII result from the multiplication of that value of q into the respective probable errors in (392) and the respective values of R_{a} in Table XVII.

The following explanations relate to the quantities appended to Table XVIII:
The masses of Mercury, Venus, and the Earth, together with their probable errors, were computed by means of formule (344), (345), and (346), with the value of $d \mathrm{E} \pm d \mathrm{E}^{\prime}$ given in the fourth column of Table XVIII. The mass of the Moon is that given in the table, transformed from a decimal to a vulgar fraction.

The lengths of the equatorial and polar semi-diameters of the Earth were found from (356), with the value of ε from the fourth column of Table XVIII, and de from (381). As the expressions (356) are of the form $a=m+n . d \varepsilon$, if we put r with a sub. script letter for the probable error of the quantity symbolized by the subscript, we shall have

$$
\begin{equation*}
r_{\mathrm{a}}^{2}=r_{\mathrm{m}}^{2}+\left(n r_{\mathrm{c}}\right)^{2} \tag{406}
\end{equation*}
$$

TAble XVIII.-Final Results for the Epoch 1850.0.

Quantities.	Observed values.	Corrections by ad justment.	Adjusterl values.
	11	11	"
A	8.83t ± 0.01212	0.024 95	$8 . \mathrm{Sog}^{05} \pm 0.00567$
I'	3422.69281 ± 0.17050	0.15065	3422.54216 ± 0.12533
\#	50.35699 ± 0.00349	+ 0.00011	50.35710 ± 0.00349
11	9.2331 ± 0.01575	-0.01256	9.22054 1. 0.00859
Q	125.46 ± 0.49318	0.50874	124.95126 ± 0.08197
1.	6.514 ± 0.02255	+ 0.00894	6.52294 ± 0.01854
a	20.466 ± 0.01550	0.01149	20.45451 ± 0.01258
θ	$497.0{ }^{\text {s }}$ ($1.43728^{\text {s }}$	$+1.00595^{8}$	$498.00595^{3} \pm 0.30834^{8}$
1	IS6 347 ± 50.728 miles	- 9.998 miles	186 $337.00 \pm 49 \% 722$ miles
E	0.000003005097		0.000003056097
	± 0.000000022625	$\}+51000$,	± 0.000000005829
M	0.012714		0.012335305
	± 0.000312820	$\}-37069$	± 0.000036214
ε	0.003374785	,	0.003331057
	± 0.000046450	$\}-43728$ \{	± 0.000032371

Mass of Mercury $=\frac{0.358223 \pm 0072441}{3000000}=\frac{1}{8374672 \pm 1765762}$
Mass of Venus $=\frac{0.982587 \pm 0.004503}{401847}=\frac{1}{408968 \pm 1874}$
Mass of Earth $=\frac{1.084720 \pm 0.002069}{354936}=\frac{1}{327214 \pm 624}$
Mass of Moon $=\frac{1}{81.068 \pm 0.238}$.
Earth's equatorial semidiameter $=20925293 \pm 4094$ feet,

Earth's polar semidiameter $=20855590 \pm 325^{\circ}$ feet,
$=3949.922 \pm 0.062$ miles.
One Earth quadrant

$$
=393775819 \pm 4927 \text { inches, }
$$

$$
=32 S \text { i4 } 652 \pm 4106 \text { feet, }
$$

$$
=6214.896 \pm 0.078 \text { miles. }
$$

Earth's flattening $=\frac{a-b}{a}=\frac{1}{300.205 \pm 2.964}$
Mean distance from Earth to Sun $=92796950 \pm 59715$ miles.
Mean distance from Eartli to Moon $=23885475 \pm 9916$ miles.
Length of seconds pendulum $=3.251045+0.017356 \sin ^{2} \varphi$ feet, $=39$ OI $2540+0.208268 \sin ^{2} \varphi$ inches.
Acceleration by gravity, per second of mean time
$=32.086528+0.17$ I $293 \sin ^{2} \varphi$ feet,
$=9.779886+0.052210 \sin ^{2} \phi$ meters.

Table XVIII gives $r_{t}= \pm 0.000032371$, and upon the assumption that the probable error of the length of a well measured geodetic arc is about one part in 150000 , (356) gives

$$
r_{\mathrm{m}} \text { for } a= \pm 139.5 \text { feet } \quad r_{\mathrm{m}} \text { for } b= \pm 139^{\circ} 0 \text { feet }
$$

With these values the probable errors attached to the adjusted lengths of the Earth's semidiameters were found from (406).

A quadrant of the Earth, measured from the north pole along any meridian to the equator, is the theoretical basis of the metric system, and in computing its length from our values of the Earth's polar and equatorial semidiameters the following formula was employed:

One Earth Quadrant

$$
\begin{equation*}
=\frac{\pi(a+b)}{4}\left\{1+\frac{1}{4}\left(\frac{a-b}{a+b}\right)^{2}+\frac{1}{64}\left(\frac{a-b}{a+b}\right)^{4}+\frac{\mathrm{I}}{25^{6}}\left(\frac{a-b}{a+b}\right)^{6}+\text { etc. }\right\} \tag{407}
\end{equation*}
$$

The distances of the Sun and Moon from the Earth, together with their probable errors, were computed by means of the formula

$$
\begin{equation*}
\left.\mathrm{D}=\| \operatorname{cosec} p \pm \sqrt{ }\left[\left(\operatorname{cosec} p \cdot r_{\mathrm{a}}\right)^{2}+(\mathrm{D} \cot p) \operatorname{arc} \mathrm{I}^{\prime \prime} r_{\mathrm{p}}\right)^{2}\right] \tag{408}
\end{equation*}
$$

where a is the Earth's equatorial semidiameter, r_{a} its probable error; D the distance corresponding to the parallax p, and r_{p} the probable error of p. The expression for the probable error of D was found in the usual way, by differentiating $a \operatorname{cosec} p$, squaring the several terms, and replacing the differentials by the probable errors.

The equations (321) and (12) give

$$
\begin{equation*}
l=\left(l_{45}-\frac{5 a}{t_{1}{ }^{2}}\right) \frac{1-\varepsilon \sin ^{2} \varphi}{1-\frac{1}{2} \varepsilon}+\frac{\mathrm{ro} a}{t_{1}^{2}} \sin ^{2} \varphi \tag{409}
\end{equation*}
$$

from which the length of the seconds pendulum was computed with the adjusted values of a and ε from Table XVIII, l_{45} from (IO) and t_{1} from (I_{7}). The expression for the acceleration by gravity then followed from the usual formula, $g=\pi^{2} l$.

Replacing $\sin ^{2} \varphi$ in (409) by its equivalent, $\frac{1}{2}(1-\cos 2 \varphi)$, we get

$$
\begin{equation*}
l=l_{45}+{ }_{2}^{1}\left\{\left(l_{45}-\frac{5 \ell}{t_{1}^{2}{ }^{\prime \prime}}\right) \frac{\varepsilon}{1-\frac{1}{2} \varepsilon}-\frac{10 a}{t_{1}^{2}}\right\} \cos 2 \mathscr{P} \tag{410}
\end{equation*}
$$

the differential of which is

$$
\begin{align*}
d l= & +\left\{1+\frac{\varepsilon}{2-\varepsilon} \cos 2 \varphi\right\} d l_{45}-\frac{5 d a}{t_{1}^{2}}\left\{\mathrm{I}+\frac{\varepsilon}{2-\varepsilon}\right\} \cos 2 \varphi \tag{4II}\\
& +\left\{l_{45}-\frac{5 a}{t_{1}^{2}}\right\}{ }_{(2-\varepsilon)^{2}}^{2 d \varepsilon} \cos 2 \varphi
\end{align*}
$$

or, after substituting the numerical values of l_{45}, a, ε, and t_{1},

$$
\begin{align*}
d l= & +(\mathrm{I}+0.001668307 \cos 2 \varphi) d l_{45} \\
& -0.000000000675 \cos 2 \varphi \cdot d a \tag{412}\\
& +1 \cdot 628234 \cos 2 \varphi \cdot d \varepsilon \text { foot }
\end{align*}
$$

Then writing r_{l} for the probable error of l, r_{0} for that of l_{45}, and sulstitutiner the numerical probable error of ε from 'lable XVIII, we find with sufficient accuracy

$$
\begin{equation*}
r_{l}= \pm \sqrt{ }\left(r_{0}^{2}+0.000000002778 \cos ^{2} 2 \mathscr{P}\right) \text { foot } \tag{413}
\end{equation*}
$$

The value of r_{0} seems to be about ± 0.000040 of a foot, but its uncertainty is so great that no probable error is appended either to the length of the seconds pendulum or to the expression for the acceleration by gravity.

Formula (408) and (413) are sufficient to give the probable errors of 1) and l with all needful exactuess, but nevertheless they are only approximate. Rigorous accuracy would require the differentials of the adjusted quantities to be expressed in terms of the original observed quantities, and then the formule would become much more complicated.

28.-THE ELECTRIC CONSTANT v.

Maxwell has employed the symbol v to denote the ratio of the electrostatic to the electromagnetic unit of electricity, and has endeavored to prove that v is a velocity identical with the velocity of light. The correctness of his theory is now generally admitted, but its experimental verification is still a matter of interest, and for that reason an attempt has been made to collect all the published values of v in Table XIX.

Table XIX.- Values of the Electric Constant r, found by various Experimenters.

Date.	Authority.	Observed	$\begin{gathered} \text { Corrected } \\ v \end{gathered}$
1857	Kohlrausch \& Weber (359, P. 264)** . .	3107	3107
1869	W. Thomson \& King (360 and $362, \mathrm{p} .417$)	$284 \cdot 6$	$280 \cdot 8$
1 868	M.axweli (361, p. 651)	288.0	28.1
1873	M'Kician (362, p.427)	293.2	289.3
1879	Ayrton \& Perry (363, p. 141)	298.0	296.0
1879	Hockin (364, p. 28S)	$298 \cdot 8$	296.8
1880	Shida ($365, \mathrm{p} .436$)	299.5	295.5
1882	Exnf:r (367 , p. III, and 369, p. 301)	301.1	$292 \cdot 3$
1883	J. J. Titomsin ($368, \mathrm{p} .721$)	$296 \cdot 3$	$296 \cdot 3$
1884	Kımenčlč (369 , p. 32 S) .	301.9	301.9
1888	Ifmetedt ($370, \mathrm{p} .136$) .	$300 \cdot 9$	$300 \cdot 9$
1889	W. Thomson (372, p. 312) . .	-••	$300 \cdot 4$
I SS9	Rowlani) (371, p. 296) . .	298.2	29S•2
1889	$\operatorname{Rosa~}(372, \mathrm{p} .312) \cdots$	$300 \cdot 0$	$300 \cdot 0$
1890	I. J. Thomson \& starle ($373, p \cdot 37 \mathrm{~S}$) . .	$299 \cdot 6$	299.6

The results obtained by the several experimenters are given in the third column of the table, but they depend upon various standards of resistance, and must be reduced to absolute measure before comparison either with each other or with the velocity of light. That reduction has been effected upon the assumption that the true ohm is 0.98664 of the British Association ohm, and the results are given in the last colmm of the table. Since 1857 the observed values of v have approximated more and more
to the velocity of light, and if we reject the results obtained by Komlrausch \& Weber, Sii W. Tifonson \& King, Maxifell, M'Kichan, and Exner, the ten remaining determinations give

$$
\begin{equation*}
v=(29856 \pm 155) 10^{6} \text { centimeters per second } \tag{4I4}
\end{equation*}
$$

while the velocity of light from Table XVIII is

$$
\begin{equation*}
\mathrm{V}=(29988 \pm 8) 10^{6} \text { centimeters per second. } \tag{415}
\end{equation*}
$$

The difference of these results is only 0440 of one per centum, and is so much less than the square root of the sum of the squares of the probable errors as to leave little doubt that V and v are absolutely identical.

29.-SUPPLEMENTARY DATA.

The following data are inserted here to remedy omissions which have occurred in the preceding pages from rarious causes.

In 1863 Archdeacon Pritt proposed a method of deducing the size and figure of the Earth, which was based upon the idea of eliminating the effects of local attraction from the amplitudes of the geodetic ares employed, and by it in 88 I he found from the Anglo-Gallic, Russian, and Indian ares*

$$
\begin{aligned}
& a=20926 \mathrm{I} 84 \text { feet } \\
& b=20855304 \text { feet } \\
& \varepsilon=1 / 295^{\circ} 2
\end{aligned}
$$

In 1876, from a series of pendulum observations made at 73 stations, whose latitudes ranged between $+79^{\circ} 50^{\prime}$ and $-62^{\circ} 56^{\prime}$, Dr. A. Fischer found \dagger

$$
l=0.99 \mathrm{IOII}+0.005 \mathrm{IO} 5 \sin ^{2} \varphi \text { meter }
$$

In i884, from the series of observations used by Dr. Fischer, Dr. G. W. Hill found \ddagger

$$
\begin{align*}
l= & 0.9927148 \text { meter } \\
& +0.0050890 \rho^{-4}\left(\sin ^{2} \varphi-\frac{1}{3}\right) \\
& +0.0000979 \rho^{-4} \cos ^{2} \varphi \cos \left(2 \omega^{\prime}+29^{\circ} 04^{\prime}\right) \\
& -0.0001355 \rho^{-5}\left(\sin ^{3} \varphi-\frac{3}{5} \sin \varphi\right) \tag{416}\\
& +0.0005421 \rho^{-5}\left(\sin ^{2} \varphi-\frac{1}{5}\right) \cos \varphi \cos \left(\omega^{\prime}+217^{\circ} 51^{\prime}\right) \\
& +0.0002640 \rho^{-5} \sin \varphi \cos ^{2} \varphi \cos \left(2 \omega^{\prime}+4^{\circ} 49^{\prime}\right) \\
& +0.0001248 \rho^{-5} \cos ^{3} \varphi \cos \left(3 \omega^{\prime}+110^{\circ} 24^{\prime}\right) \\
& +0.0001489 \rho^{-6}\left(\sin ^{4} \varphi-\frac{6}{7} \sin ^{2} \varphi+\frac{3}{35}\right)
\end{align*}
$$

* $151 / 2$, p. 177. Compare also $257 / \mathrm{s}$ and $221 / 2$.

$$
\begin{align*}
& +0.0007386 \rho^{-6}\left(\sin ^{3} \varphi-\frac{3}{7} \sin \varphi\right) \cos \varphi\left(\cdot 0 s\left(\omega^{\prime}+3^{\circ} \mathrm{O}^{\prime}\right)\right. \\
& +0.0002175 \rho^{-6}\left(\sin ^{2} \varphi-\frac{1}{7}\right) \cos ^{2} \varphi \cos \left(2 \omega^{\prime}+262^{\circ}{ }_{1} 7^{\prime}\right) \tag{416}\\
& +0.0003126 \rho^{-6} \sin \varphi \cos ^{3} \varphi \cos \left(3^{\omega^{\prime}}+148^{\circ} 20^{\prime}\right) \\
& +0.00005^{\circ} 4 \rho^{-6} \cos ^{4} \varphi \cos \left(4 \omega^{\prime}+248^{\circ} 19^{\prime}\right)
\end{align*}
$$

where ϕ is the geocentric latitude, ω^{\prime} the geogriphical longitude, and ρ a factor, varying with the latitude, such that the radius of the Earth at latitude \mathcal{P} is ap.

In the course of their investigations respecting mutation, Bessel, Peters, and Nyrén have made use of penduhum experiments to find the values of certain functions which they called P and P^{\prime}. The relation between l, P, and P^{\prime} is*

$$
\begin{equation*}
l=1+\mathrm{P} \sin ^{2} \phi^{\prime}+\mathrm{P}^{\prime}\left(\sin ^{3} \phi^{\prime}-\frac{3}{5} \sin \varphi^{\prime}\right) \tag{417}
\end{equation*}
$$

where the length of the pendulum at the equator is taken as unity. With that unit, formula (9) gives

$$
\begin{equation*}
l=\mathrm{I}+\left(\frac{\mathrm{I} 0 a}{l_{0} t_{1}{ }^{2}}-\varepsilon\right) \sin ^{2} \varphi \tag{418}
\end{equation*}
$$

and by equating (417) and (418)

$$
\begin{equation*}
\left(\frac{10 \alpha}{l_{0} t_{1}{ }^{2}}-\varepsilon\right) \sin ^{2} \varphi=\mathrm{P} \sin ^{2} \varphi^{\prime}+\mathrm{P}^{\prime}\left(\sin ^{3} \phi^{\prime}-\frac{3}{5} \sin \varphi^{\prime}\right) \tag{419}
\end{equation*}
$$

At the poles $\varphi=\varphi^{\prime}$, and as all powers of the sine are there unity, (419) reduces to

$$
\begin{equation*}
\varepsilon=\frac{10 a}{l_{0} t_{1}{ }^{2}}-\mathrm{P} \mp \frac{2}{5} \mathrm{P}^{\prime} \tag{420}
\end{equation*}
$$

or, with our adjusted values of a, l_{0} and t_{1}

$$
\begin{equation*}
\varepsilon=0.00866952-\mathrm{P} \mp 0.4 \mathrm{P}^{\prime} \tag{42I}
\end{equation*}
$$

in which the double sign is to be taken negative for the northern, and positive for the southern hemisphere of the Earth. To distinguish the two values of ε thus arising, we shall call the former ε^{\prime}, and the latter $\varepsilon^{\prime \prime}$.

In i8 i8, from pendulum experiments at 3 I stations, Bessel found \dagger

$$
\mathrm{P}=+0.0054448 \quad \mathrm{P}^{\prime}=+0.0006689
$$

whence, by (421)

$$
\varepsilon^{\prime}=1: 338 \cdot 17 \quad \varepsilon^{\prime \prime}=1: 286.34 \quad \frac{1}{2}\left(\varepsilon^{\prime}+\varepsilon^{\prime \prime}\right)=1: 310 \cdot 11
$$

In 1841, from experiments at 54 stations, Dr. C. A. F. Peters found \ddagger

$$
\mathrm{P}=+0.005233 \quad \mathrm{P}^{\prime}=-0.000334
$$

whence

$$
\varepsilon^{\prime}=1: 280 \cdot 10 \quad \varepsilon^{\prime \prime}=1: 302^{\prime} 76 \quad \frac{1}{2}\left(\varepsilon^{\prime}+\varepsilon^{\prime \prime}\right)=1: 290^{\prime} 99
$$

In 1872, from experiments at 74 stations, Nyrén found*

$$
\mathrm{P}=+0.005194 \quad \mathrm{P}^{\prime}=-0.000134
$$

whence

$$
\varepsilon^{\prime}=1: 283.36 \quad \varepsilon^{\prime \prime}=1: 292.23 \quad \frac{1}{2}\left(\varepsilon^{\prime}+\varepsilon^{\prime \prime}\right)=1: 28773
$$

All these values of the Earth's flattening should have been included in Table XI.
The fiftl volume of the "Account of the operations of the great trigonometrical survey of India" contains a vast mass of data respecting pendulum experiments, but it was impossible to utilize them in the present investigation, because no general results are given, either for the length of the seconds pendulum or for the figure of the Earth, and none can be deduced without a large expenditure of labor.

In I 890 Professor Newconib rediscussed the observations of the transits of Venus which occurred in 1761 and 1769 , and found from them, for the solar parallax, $8.79^{\prime \prime} \pm 0.034^{\prime \prime} . \dagger$

30.-SUMMARY OF RESULTS.

Three essentially different systems of astronomical constants are given in the preceding pages, namely, (a) in Table VI, a system based upon General Clarke's spheroid of 1880, whose semiaxes are specificd by the equations (3); (b), on page 1 11, a system based upon Clarke's value of the Earth's equatorial semidiameter, to wit, 20926202 feet, and adapted to any possible value of the flattening; and (c), in Table XVIII, a system in which the size and figure of the Earth were included among the quantities determined by the general adjustment. The latter system is certainly the most probable of the three, and for convenience of reference the values of all the quantities involved in it are here collected and appended. They are to be regarded as the definitive results of the investigations embraced in this paper.

Size, Figure, Density, and Moments of Inertia of the Earth.

$$
\begin{aligned}
& \text { Equatorial semidiameter }=a=20925293 \pm 4094 \text { feet } \\
& =3963.124 \pm 0.078 \text { miles } \\
& =637797^{2} \pm 124.8 \text { meters. } \\
& \text { Polar semidianeter } \quad=b=20855590 \pm 325^{\circ} 1 \text { feet } \\
& =3949.922 \pm 0.062 \text { miles } \\
& =6356727 \pm 99^{\circ} 09 \text { meters. } \\
& \text { One Earth quadrant } \quad=393775819 \pm 4927 \text { inches, } \\
& =32814652 \pm 4106 \text { feet, } \\
& =6214.896 \pm 0078 \text { miles, } \\
& =10001816 \pm 125^{\circ} 1 \text { meters. } \\
& \text { Flattening }={ }_{a}^{a-b}={ }_{300 \cdot 205 \pm 2 \cdot 964} \\
& \text { Eccentricity }=\frac{a^{2}-l^{2}}{a^{3}}=0.006651018
\end{aligned}
$$

Log. $\rho=9.9992772758+0.0007245325 \cos 2 \varphi$

$$
-0.0000018131 \cos 49
$$

$$
+0.0000000047 \cos 6 q
$$

$$
\varphi-\varphi^{\prime}=688 \cdot 2242^{\prime \prime} \sin 2 \varphi-r^{\prime} 1482^{\prime \prime} \sin 4 \varphi+0.0026^{\prime \prime} \sin 6 \varphi
$$

Mean density of the Earth

$$
=5.576 \pm 0016
$$

Surface density of the Earth

$$
=2.56 \pm 0.16
$$

Moments of inertia of the earth, $(\mathrm{C}-\mathrm{A}): \mathrm{C}=0.00326521=1: 306.259$

$$
\begin{aligned}
\mathrm{C}-\mathrm{A} & =0.001064767 \mathrm{E}^{\prime} a^{2} \\
\mathrm{~A}=\mathrm{B} & =0.325029 \mathrm{E}^{\prime} a^{2} \\
\mathrm{C} & =0.326094 \mathrm{E}^{\prime} a^{2}
\end{aligned}
$$

Length of the Seconds Pendulum.

$l=39.012540+0.208268 \sin ^{2} \varphi$ inches,
$=3.251045+0.017356 \sin ^{2} \varphi$ feet,
$=0.990910+0.005290 \sin ^{2} \varphi$ meter.
Acceleration by Gravity, per Second of Mean Solar Time.

$$
\begin{aligned}
y & =32.086528+0.171293 \sin ^{2} \varphi \text { feet } \\
& =9.779886+0.052210 \sin ^{2} \varphi \text { meters. }
\end{aligned}
$$

Length of the Year.
Sidereal year $=365 \cdot 2563578$ mean solar days,
$=365^{\text {d }} 06^{\text {h }} 09^{\mathrm{m}} 09.314^{\text {s }}$
$=31558149.314$ mean solar seconds
Tropical year $=36.242199870^{\mathrm{d}}-0.0000062124^{\mathrm{d}}\left(\frac{t-1850}{100}\right)$
$=365^{\mathrm{d}} 05^{\mathrm{h}} 48^{\mathrm{m}} 46.069^{\mathrm{s}}-0.53675^{-s}\left(\frac{t-1850}{100}\right)$

Length of the Month.

Sidereal month $=27321661162^{\mathrm{d}}-0.00000026240^{\mathrm{d}}\left(\frac{t-\mathrm{ISOO}}{100}\right)$

$$
=27^{\mathrm{d}} 07^{\mathrm{h}} 43^{\mathrm{mm}} 11 \mathrm{I}^{\cdot} 524^{\mathrm{s}}-0.02267 \mathrm{I}^{\mathrm{s}}\left(\frac{t-1800}{100}\right)
$$

Synodical month $=29.530588435^{d}-0.00000030696^{d}\left(\frac{t-1800}{100}\right)$

$$
=29^{\mathrm{d}} 12^{\mathrm{h}} 44^{\mathrm{mu}} 02.841^{\mathrm{s}}-0.026522^{\mathrm{s}}\left(\frac{t-1800}{100}\right)
$$

Lenyth of the Sidereal Day.
86164.09965 mean solar seconds.

Ratio of the Mean Motions of the Sun and Moon.

$$
m=0.074 \text { SOI } 329112
$$

Masses of the Planets.

N. B.-The value given for the Earth is the combined mass of the Earth and Moon.

$$
\begin{aligned}
& \text { Mercury }=1:(8374672 \pm 1765762) \\
& \text { Venus }=1:(408968 \pm 1874) \\
& \text { Earth }=1:(327214 \pm 624) \\
& \text { Mars }=1:(3093500 \pm 3295) \\
& \text { Jupiter }=1:(104755 \pm 0.20) \\
& \text { Saturn }=1:(3501.6 \pm 078) \\
& \text { Uranus }=1:(22600 \pm 36) \\
& \text { Neptune }=1:(18780 \pm 300) \\
& \text { Moon }=1:(81.068 \pm 0.238) \\
& \quad \text { Solar Parallax. } \\
& \qquad p=8.80905^{\prime \prime} \pm 0.00567^{\prime \prime}
\end{aligned}
$$

Mean distance from Earth to Sun $=92796950 \pm 59715$ miles, $=149340870 \pm 96$ roi kilometers.

Eccentricity of the Earth's Orbit.

$$
\begin{aligned}
e_{1}=0.016771049 & -0.0000004245(t-1850) \\
& -0.000000001367\left(\frac{t-1850}{100}\right)^{2}
\end{aligned}
$$

Lunar Inequality of the Earth.

$$
\mathrm{L}=6.52294^{\prime \prime} \pm 0.01854^{\prime \prime}
$$

Lunar Parallax.

$$
\begin{aligned}
\mathrm{P} & =3422.54216^{\prime \prime} \pm 0.12533^{\prime \prime} \\
\sin \mathrm{P}: \operatorname{arc\mathrm {I}^{\prime \prime }} & =3422.385 \mathrm{II} \mathrm{\prime} \pm 0.12533^{\prime \prime}
\end{aligned}
$$

Mean distance from Earth to Moon $=60.269315 \pm 0.002502$ terrestrial radii, $=238854.75 \pm 9.916$ miles, $=38439601 \pm 15.958$ kilometers.

Eccentricity and Inclination of the Moon's Orbit.

$$
c_{2}=0.054899720
$$

Delaunay's $y=\sin \frac{1}{2} \mathrm{I}=0.044886793$
$I=5^{\circ} 08^{\prime} 43.3546^{\prime \prime}$
Mean Motion of the Moon's Node in $365 \frac{1}{1}$ Days.
$\mu=-19^{\circ} 21^{\prime} 19^{\circ} 6191^{\prime \prime}+0.14136^{\prime \prime}\left(\frac{t-1800}{100}\right)$

Perallactic Incquality of the Moon.

$$
\mathrm{Q}=124.95126^{\prime \prime} \pm 0.08197^{\prime \prime}
$$

Seculer I'art of the I'recession.

$$
\begin{gathered}
\mu=17330968^{\prime \prime} c=2.1835^{\prime} 3 \\
\psi=\left(50.35710^{\prime \prime} \pm 0.00349^{\prime \prime}\right)(t-1850)-0.00010670^{\prime \prime}(t-1850)^{2} \\
\omega=23^{\circ} 27^{\prime} 3147^{\prime \prime} \pm 0345^{\prime \prime}+0.00000641^{\prime \prime}(t-1850)^{2} \\
\psi_{1}=\left(50^{\circ} 23^{6} 15^{\prime \prime} \pm 000349^{\prime \prime}\right)(t-1850)+0.00011023^{\prime \prime}(t-1850)^{2} \\
\omega_{1}=23^{\circ} 27^{\prime} 31^{\prime} 47^{\prime \prime} \pm 0.345-046057^{\prime \prime}(t-1850)-0.00000073^{\prime \prime}(t-1850)^{2} \\
\text { Constant of Nutation. } \\
\text { del }=9^{.220} 54^{\prime \prime} \pm 0.00859^{\prime \prime}+0.00000904^{\prime \prime}(t-1850 \\
\text { Gencral Formulue for Precession and Nutation. }
\end{gathered}
$$

[For explanation, see page 86.]

$$
\begin{aligned}
& \psi=\left[5035710^{\prime \prime}+0.00004943^{\prime \prime}\left(t_{0}-1850\right)\right]\left(t-t_{0}\right) \\
& -0.00010670^{\prime \prime}\left(t-t_{0}\right)^{2}+\Psi \\
& \omega=23^{\circ} 27^{\prime} 31^{\prime} 47^{\prime \prime}-0.46657^{\prime \prime}\left(t_{0}-1850\right) \\
& -0.00000073^{\prime \prime}\left(t_{0}-1850\right)^{2}+00000064 \mathrm{I}^{\prime \prime}\left(t-t_{0}\right)^{2}+\Omega \\
& \lambda=\left[0.13184^{\prime \prime}-0.00018656^{\prime \prime}\left(t_{0}-1850\right)\right]\left(t-t_{0}\right) \\
& -0.00023653^{\prime \prime}\left(t-t_{0}\right)^{2} \\
& m=46.06308^{\prime \prime}+0.00027725^{\prime \prime}\left[\left(t_{0}-1850\right)+\left(t-t_{0}\right)\right] \\
& n=20.04658^{\prime \prime}-0.00008494^{\prime \prime}\left[\left(t_{0}-\mathrm{I} 850\right)+\left(t-t_{0}\right)\right] \\
& \psi_{1}=\left[50.236 \mathrm{I} 5^{\prime \prime}+0.00022045^{\prime \prime}\left(t_{0}-1850\right)\right]\left(t-t_{0}\right) \\
& +0.00011023^{\prime \prime}\left(t-t_{0}\right)^{2}+\Psi \\
& \omega_{1}=23^{\circ} 27^{\prime} 3147^{\prime \prime}-0.46657^{\prime \prime}\left(t_{0}-1850\right)-0.00000073^{\prime \prime}\left(t_{0}-1850\right)^{2} \\
& -\left[0.46657^{\prime \prime}+0.00000146^{\prime \prime}\left(t_{0}-1850\right)\right]\left(t-t_{0}\right) \\
& \text { - } 0.00000073^{\prime \prime}\left(t-t_{0}\right)^{2}+\Omega \\
& \phi^{\prime \prime}=\left[0.4695 \mathrm{I}^{\prime \prime}-0.00000689^{\prime \prime}\left(t_{0}-\mathrm{I} 850\right)\right]\left(t-t_{0}\right) \\
& -0.00000345^{\prime \prime}\left(t-t_{0}\right)^{2} \\
& \theta^{\prime \prime}=173^{\circ} 34^{\prime} 54^{\prime \prime}+32.655^{\prime \prime}\left(t_{0}-1850\right)-8.791^{\prime \prime}\left(t-t_{0}\right) \\
& M=173^{\circ} 34^{\prime} 54^{\prime \prime}+32.655^{\prime \prime}\left[\left(t_{0}-1850\right)+\left(t-t_{0}\right)\right] \\
& \Psi=-\left[17.2463^{\prime \prime}+0.0001732^{\prime \prime}(t-1850)\right] \sin \delta \\
& +\left[0.2070^{\prime \prime}+0.0000002^{\prime \prime}(t-1850)\right] \sin 28 \\
& -\left[1.2642^{\prime \prime}+0.0000012^{\prime \prime}(t-1850)\right] \sin 2 \odot \\
& -\left[0.2043^{\prime \prime}+0.0000002^{\prime \prime}(t-1850)\right] \sin 2 \mathbb{C} \\
& +\left[0.1273^{\prime \prime}+0.0000001^{\prime \prime}(t-1850)\right] \sin \Lambda_{\odot} \\
& +\left[0.0686^{\prime \prime}+0.000000 I^{\prime \prime}(t-1850)\right] \sin \Lambda_{\sigma} \\
& \Omega=+\left[9.2205^{\prime \prime}+0.0000090^{\prime \prime}(t-1850)\right] \cos 8 \\
& -\left[0.0899^{\prime \prime}-0.0000005^{\prime \prime}(t-1850)\right] \cos 28 \\
& +\left[0.5486^{\prime \prime}-0.0000029^{\prime \prime}(t-1850)\right] \cos 2 \odot \\
& +\left[0.0886^{\prime \prime}-0.0000005^{\prime \prime}(t-1850)\right] \cos 2 \mathbb{}
\end{aligned}
$$

Constant of Aberration.
$\alpha=20.4545^{\prime \prime} \pm 0.0125^{\prime \prime}$
Light Equation and Velocity of Light.

$$
\theta=498.00595^{-8} \pm 0.30834^{8}
$$

$$
V=18633700 \pm 49.722 \text { miles per second, }
$$

$$
=299877.64 \pm 80 \cdot 19 \text { kilometers per second. }
$$

31.-CONCLUDING REMARKS.

The preceding section contains a thoroughly homogeneous system of constants, based upon an enormous mass of astronomical, geodetic, gravitational, and tidal observations which have required more than two hundred years for their accumulation, and now it only remains to inquire how these constants can be most readily improved in the future. The first step in that direction will be to examine the sources of their probable errors, all of which are exhibited in Table XVII, and in doing so it must not be forgotten that a quantity may contribute little to the probable errors in the table, either because its own probable error is small, or because it is very large. In the former case the uncertainty which it introduces will be intrinsically small, while in the latter it will be rendered small by its small coefficient, and these two cases must be carefully distinguished.

Table XVII shows that the probable error of the Earth's flattening arises quite equably from the probable errors of the observed values of P and ε, and these are almost its only sources.

Respecting P, we remark that as yet its value depends mainly upon meridian observations made at Greenwich and the Cape of Good Hope, hut a value determined from observations made at some station near the equator is urgently needed to aid in ascertaining the true flattening of the Earth. Such a value could be obtained in a few months by employing the method of vertical transits to compare the position of the Moon when rising and setting with that of a neighboring star, and the work might well be undertaken by a small astronomical expedition. If, in addition to that, the observatories at the Cape of Good Hope, Melbourne, Sydney, Adelaide, Cordoba, and Santiago de Chile would co-operate with those of the northern hemisphere in systematically making meridian observations of the Mon for two or three years, the resulting data would doubtless lead to a material improvement of our knowledge concerning the lunar parallax and the flattening of the Earth. A probable error of $\pm 0.02689^{\prime \prime}$ in each of the two values of P, found respectively for the equator and for the pole, would give rise to an meertainty of one unit in the reciprocal of ε.

On page 126 the observed value of ε was found from the four values given respectively by the geodetic arcs, Helmirt's reduction of the pendulum experiments, precession and mutation, and perturbations of the Moon; but now we must also take account of the last general adjustment. With the values of and from Table XVIII, formula (288) gives ($\mathrm{C}-\mathrm{A}$) $/ \mathrm{C}=0.003265$ 29, whence, by Table IX, $\varepsilon=1: 297 \circ 91$. Further, although in Table XII Hansen's values of the Moon's per-
turbations give $\varepsilon=1: 294^{\circ} 93$, Ark's value, founded upon much better known data, gives $\varepsilon=1: 31140$, and there is no way of determining what the true value is. In short, the general adjustment, the pendulum experiments, and precession and mitation give a flattening differing little from 1:300, the result from lunar perturbations is uncertain within rather wide limits, and the geodetic ares give $1: 2935$. Thus it appears that the geodetic value stands quite alone, and as it is almost certainly erroneous, the probable error of the observed value of ε could be largely diminished by making ε depend solely upon the results from pendulum experiments and precession and mutation. At the present time more pendulum experiments, both in the neighborhood of the equator, and as near as possible to the poles, are among the things most. needed to perfect our knowledge of the figure of the Earth. Experiments in middle latitudes will contribute little to that end, however useful they may be for other purposes.

Unfortunately no value of the Earth's flattening can be deduced, either from the pendulum experiments or from precession and nutation, without making some assimption respecting the unknown constitution of the interior of the Earth. Notwithstanding the difficulties which arise in connection with the rigidity exhibited by the Earth under the action of the forces which generate precession, nutation, and the ticles, the theory of a comparatively thin crust resting in approximate hydrostatic equilibrimm upon a denser substratum is favored by enough facts to render it very plausible. If adopted, it necessarily entails the use of the condensation method for the reduction of the pendulum experiments, but it is not clear that IEemert's mumerical result depends essentially upon that method, because Unflerdinger got nearly the same result by means of a totally different theory. Furthermore, if the interior of the Earth ever was liquid, Le Gendre's law of the distribution of density therein must be at least approximately true, and some evidence to that effect is afforded by the substantial agreement between the values of ε found respectively from the general adjustment, the pendulum experiments, and precession and nutation.

As stated on page 5, the georletic arcs used in determining the figure of the Earth are located in England, France, Russia, India, South Africa, and Peru. Hitherto no great arcs except those of the Lake Survey* have been measured in the United States, but several have been projected by the U. S. Coast and Geodetic Survey, and some of these are so far advanced that their completion may be expected in the near future. All who comprehend the importance of the subject hope that the United States will not long remain behind other great mations in contributing her share toward determining the size and figure of the globe we inhabit.

The extent to which the flattening of the Earth deduced from the gendetic ares differs from that formd by other trustworthy methods seems to indicate that the existing arcs are not well adipped to determine the relative lengths of the polar and equatorial semidiameters. Possibly the difficulty may arise from the preponderating influence which the ten southern degrees of the Indian are now have in determining the length of the polar semidiameter, \dagger and if so, at meridianal arc sitnated within the

[^18]United States, and having its center about latitude 35°, would be of great value. To determine the reciprocal of ε with a probable error not exceeding one unit, the probable error of each of the semidiameters must be reduced to ± 1644 feet. With our present resources it will probably be best to find the value of ε from pendulum experiments, precession, nutation, and perturbations of the Moon, and after the ratio of the Eartl's semidiameters has thus become known, their absolute lengths can be got from the ares with great exactness.

Table XX has been compiled from Table XVII in order to show as clearly as possible the relative importance of each quantity in determining the probable error of every one of the twelve quantities included in the general adjustment. The several quantities are entered symbolically in the first column of the table, and on the same line with each of them the principal sources of its probable error are indicated in the order of their importance by the numerals $1,2,3$, etc. For example, in determining the probable error of Q, the parallactic inequality of the Moon's motion, the quantities whose observed values have the most influence are, I, the constant of aberration; 2, the solar parallax; 3, the velocity of light; 4, the mass of the Earth; and, 5, the light equation. A glance at the table shows that the numeral I occurs once in each of the columns $\mathrm{P}, \underset{\mathcal{Z}}{2} \mathrm{~V}$, and ε, three times in the column L , and five times in the column α. It is therefore evident that in order to improve the system of constants determined in

Table XX.-Origin of the Probable Errors of the Adjusted Quantities.

the present paper the quantities whose observed values we should endeavor to improve are, 1 , the constant of aberration; 2, the lunar inequality of the Earth's motion; 3, the solar parallax; and, 4 , the constant of nutation. The constant of precession and the velocity of light are so well determined as to be virtually independent of all other quantities, while the parallactic inequality of the Moon and the mass of the Moon from the tides are so uncertain that they have little influence upon anything.

On account of the great importance of the constant of aberration in our adjustment, it seems desirable to recall the fact that at present we have no satisfactory
theory of aberration. The constant in question has long been regarden ats the ratio of the Eiarth's mean orbital relocity to the velocity of light, hut notwithstanding the plansibility of that assmmption it has never been rigoronsly deduced from the undnlatery theory of light.

The desiderata for the improvement of the system of constints discussed in the present paper may now be recapitulated as follows:

1. The parallax of the Moon should be determined by the dimmall method, at one or more stations as near as possible to the equator.
2. The observatories in the northern and sonthem hemispheres should eon-rperate with each other for two or three years in systematically making meridian observations of the Moon to improve our knowledge of its parallax.
3. Pendulum experiments should be made at a large number of stations, located partly in the neighborhood of the equator and partly as near as possible th the poles. Experiments in midalle latitudes are also desimble, but somewhat less unersary:
4. New determinations of the constants of aberration and mutation should be made by゙ as many different methods as possible.
5. The meridian observations of the Sim, accumulated at the Greenwich and Washington Observatories during the last fifty years, should be discussed in such a way as to deduce from them the most probable coefficient of the lunar inequality of the Earth's motion.
6. New determinations of the solar parallax should be made by observing Mars during its opposition in 1892, and also by observing such asteroids ats may come into favorable positions for that purpose.
7. The measurement of some of the great ares included in the scheme of the U . S. Coast and Geodetic Surver should be completed as soon as possible.

There can be no doubt that the observations specified in paragraphs 1, 2, and 3 would materially improve our knowledge, both of the linar parallax and of the Earth's flattening ; but the probable errors of the constant of aberration, the constant of mutation, the coefficient of the lunar inequality of the Earth's motion, and the solar parallax are already so small that it will be exceedingly difficult to reduce them any further. Nevertheless, the attempt should be made.

The values given on page 139 for the Earth's moments of inertia have been derived from the adjnsted values of $\dot{2}$, $\boldsymbol{2}, \pi, l$, and ε by means of the formula (2S8) and (306). These moments of inertia determine the period of the Eulerian nutation: and if there is :ay want of coincidence between the Earth's axis of rotation and its principal axis of inertia, they also determine the period of the resulting variations of latitude. Althongh arising from widely different canses, these two periods depend nuon the same function of the moments of inertia, and are therefore alike, the length of each being $\mathrm{A} /(\mathrm{C}-\mathrm{A})$ sidereal days,* or

$$
\mathrm{A} \times \frac{36.256 t}{366.2564}=0.997270 \frac{\mathrm{~A}}{\mathrm{C}-\mathrm{A}} \text { mean solar days }
$$

With our values of A and C , the mumerical results are $305^{\circ} 26$ sidereal, or 304.42 mean solar days.

The computations in the preceding pages were all made by the author, and as it proved impracticable to have them checked by any other person, certain parts of the work were done in duplicate by means of two different sets of formulie, and special care was taken to apply check equations wherever possible. Most of the munerical operations were effected upon a Thomas arithmometer capable of dealing with factors having ten or eleven significant figures, and advantage was taken of that circumstance to increase the accuracy of the checks by carying the results somewhat beyond the usual number of decimals. The accompanying probable errors will suffice to prevent these decimals from creating any false impression respecting the degree of accuracy attained.

In conclusion the author desires to thank his colleagues, Professors Asapir Hall and Edgar Frisby, U. S. Nivy, and his friend, Mr. R. S. Woodward, U. S. Coast and Geodetic Survey, for the interest they have taken in the preparation of the present paper, for their kindness in examining much of it, both in manuscript and in proof, and for many valuable criticisms and suggestions.

32.-BIBLIOGRAPHY.

The titles of most of the works consnlted in the preparation of the present paper are given in the following list, where each is distinguished by a reference number. For the sake of brevity these numbers have been used instead of the titles themselves throughout the preceding pages, and thus all citations of authorities have been reduced to a number and a page. For example, the first citation occurs on page 3, and is in the form "I3, p. I 57 ", which signifies page 157 of the work whose title is number 13, namely, Colonel A. R. Clarke's Geodesy.
'The following abbreviations are employed:
Ast. Nach. for Astronomische Nachrichten, begründet von H. C. Schumacher (Altona und Kiel).

Comptes Rendus for Comptes Rendus liebdomadaires des séances de l'Académie des Sciences (Paris).
L., E. and D. Phil. Mag. for London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Being a continuation of Tilloch's "Philosophical Magazine," Nicholson's "Journal," and Thomson's "Annals of Philosophy" (London).

Mem. Roy. Ast. Soc. for Memoirs of the Royal Astronomical Society (London).
Month. Not. for Monthly Notices of the Royal Astronomical Society (London), containing papers, abstracts of papers, and reports of the proceedings of the Society. Phil. Trans. for Philosophical Transactions of the Royal Society of London.
Proc. Roy. Soc. for Proceedings of the Royal Society of London.

LST OF WORKS CONSULTEI IN THE PREPARATLON OF THE FOREGONG PAPER．

GENERIL TREATISESS．

1．Bessel（F．W．）．Fumlamentalastronomia pro amuo MDCCLV dedneta ex observationibus viri incon－ parabilis Janes Bradley in speenla astronomica Grenovicensi per annos 1750－176：iustitutis．Ane－ tore Friderico Wilhelmo Bessel＊＊＊Regio－

1娄．Bessel（F．W．）．Tabulao Regiomontanaerednctionnm observationum astronomicarnruabanno 1750 usque ad anunm 1850 computatie．Auctore Friderico Wilhelmo Bessel．Regiomonti Prussornm， 1830. dro，pp．lxir＋543．
2．Chauvenet（Wm．）．A manual of spherical and practical astronomy ：embracing the general prob－ lems of spherical istronomy，the special applica－ tions to nautical astronomy，and the theory and use of fixed and portable astronomical instrn－ ments．With an appendix ou the method of least squares．By Wm．Chaureuet．＊＊＊2ll edi－ tion，revisel and corrected． 2 vols．， 8 vo，Pbila－ delphia，1864．Vol．1．lיp． 003 ；vol．2，pl． 632.
3．Delambre（Jean Baptiste Joseph）．Astronomie theorique et pratuure ；par M．Delambre＊＊＂ Paris，1s14． 3 vols．，to．T．1，pp．lxiv +586 ；t．2， 111． 6 ！3；t．3，pp．720．
4．Delambre（J．B．J．）．Histoire de l＇astronome au dix－ hutrime stiele；par M．Delambre，＊＊＂Pu－ hlée par M．Mathien，＊＊Paris，182\％．4to， 11． $11 j+\tau 96$ ．
5．Houzeau（J．C．）．Vade－mecum do l＇astrouome，par J．C．Henzean，directenr de l＇Observatoire．

Annales de l＇Observatoire royal de Bruxelles． Appendice à la nouvello sério des Annales astrono－ im？！ues．Bruselles，lest．ठvo，pp．xxviij＋114．
6．La Lande．Astronomie par Jérómo le Français（La Laule）＊＊＊Troisic̀me édition，revie et ang－ mentér．Paris，1792． 3 vols．，4to．T．1，pp． Ixvj＋475＋378；t．2，plp．727：t．3，pp． 737.
7．La Place（P．S．de）．Traité de mécauiquo céleste， par P＇．S．La Place．Paris，1790－1 $8^{\circ} 25$ ．5）vols．， 4 to．
－Le Verrier（U．J．）．Amales le l＇Observatoire iupé－ rial de l＇aris，publices par U．－J．Le Verrier，direc－ tenr de j＇Observatuire．Mémoires． 14 vols．， 4 to． Paris，1855－187\％．
9．Newton（Sir Isaac）．Philnsophiae naturalis priuci－ pia mithematica．
10．Pontécoulant（Lieut．Col．G．de）．Thérie aualy：－ tíno du sÿstime du monde． 4 vols．， 12 mo．T． 3 ， Paris， $1 \sim 29$ ，pp．xxwij＋508＋23；t．2，Paris， 1829 ，
 t． 4 ，Paris， 1×46 ，ur．x viij $+66 t$ ．

11．Thomson and Tait．Treatise ounatural plifusophy， lyy Sir Willian Thomson，＊＊aud I＇eter Guthrie＇lait＊＊New elition．2 vols．，Xvo． Vol．1，part 1，Cambrilge，1－79，pl．※ivij＋． 08 ； vol．1，part 2 ，Cambridgo， 1233,111
1：3．Vince（Rev．S．）．A complete system of astronoms； by the Rev．S．Vince，A．M．，F．R．S．＊＂ 3 vols．，fto．Vol．1，Cambridge，1797，pp．iv＋533； vol．2，Cambridge，1799，pp．xij +589 ；vol．3，Cam－ bridge， $1808, p p$ ．iv $+130+206+: 551$ ．

SIZE AND FIGURE OF THE EARTH．

13．Clarke（Col．A．R．）．Georlesy，by Col．A．R．Clarkw．

14．Helmert（F．R．）．Die mathematischen and physi－ kalischen Theorieen der höheren Geodiisie．Von Dr．F．R．Helmert．こ vols．，8ro．I．Teil，Leipzig， 1880 ，ply．xıj＋631 ；II．Teil，Leıpzigr，1884，1p．xvj +610 ．
1．）．Poisson（S．D．）．Traité le wécauique：par S．D． Poisson．2me édition，considérablemeut augmen－ tée． 2 vols．，12mo．Paris，1833．Tome 1，pp． xxx＋696；tome $2, \mathrm{pp}$ ．xxxvj＋i82．
15\％．Pratt（John H．）．A treatise on attractions，La Place＇s functions，and the fignre of the earth．By John H．Pratt，M．A．，F．R．S．，archdeacon of Cial－ cutta．＊＊＊fth edition．Lenden， 1871. 12mo，pp．xvj＋is4．
16．Puissant（Col．L．）．Tıaité de géodésie，ou exposition des méthodes trigonométriques et astronomiques， applicables à la mesure le la terre，et à lia cou－ struction du cauevas des cartes topographiques； par L．Puissaut＊＊＊ $3^{\text {me edition．こ̀ vols．，}}$ to．Paris．le42．Tome 1，pp．xvj＋515；tome 2 ， pp．$x i j+496+x x x i j$ ．
16in．Airy（Sir Geo．B．）．On the figure of the earth．
Phil．Trans．，18？6．part 3，lpp．548－578．
17．Airy（Sir Geo．B．）．Figure of the cartl．
Eneyclopirdia Metropolitani，©d Division，Mised Scieuces，rol．3，pp．165－240．（Londou，18：35，4to）．
15．Bessel（F．W．）．Bestiummng der Axen des elliptis－ cheu Rotationssphäroids，welches deu rorhaude－ nen Messungen you Meridianbögen der Erde am meisten entspricht．
Ast．Niteh．，1837，13d．14，S．33：3－346．
19．Bessel（F．W．）．Ueber einen Fehler in ler Berech－ nung der französischen Gradmessnng und seinen Eintluss anf die Bestimmuner for Figur dar Erale． Ast．Nach．， $1841, \mathrm{Bal}, 19$, ‥ $97-216$.
20. Biot et Arago. Recueil d'obscrvations géodésiques, astronomuques et plysiques. cxécutées par ordre du Burean des Lougitndes de France, en Espagne, en France, en Angleterro et en Ecosse, pour déterminer la variationde la pesantenr et des degrés terrestres sur le prolongement dı Méridieu de Paris, faisaut suite au troisième volıue de la Base du Système métrípue; redige par MM. Biot et Arago. Paris, 182l. fto, plo. xax+is3.
20ł. Biot (Jean Baptiste). Mémoire sur la figure de la terre. [From pendulum experiments.]

Ménoires de l'Acad. Roy. des Sciences de l'Institut de France, 13:29, t. 8, pp. 1-56.
Clairaut (A. C.). Ne No. $2=1$, below.
21. Clarke (Capt. Alexander Ross). Ordnance trigonometrical survey of Great Britain aud lreland. Acconnt of the observations and ealenlations, of the priucipal triangulation; and of the fignre, dimensions, and wean specific gravity, of the earth as derivel therefrom. Publisherl by order of the Master-General and Board of Ordnance. Drawn up by Capt. Alex. Ross Clarke, r. e., f. r. A. S.. under the direction of Lt. Col. 1I. James, r. F... F. R. S., * * * London, 185?. 4to, pp. viij+ 783.

L2. Clarke (Capt. A. R.). On the tigure of the earth. Mem. Roy. Ast. Soc., 1459-'60, vol. 29, p! $25-44$.
$22 \frac{1}{2}$. Clarke (Capt. A. R.). On Archdeacon Pratt's "Figure of the Earth."
L., E. and D. Phil. Marr, 1866 , vol. 31, p! 19:3-196.
23. Clarke (Capt. A. R.). Comprarisons of the standards of length of England, France, Belginm, Prussia, Russia, Iudia, Australia, mate at the Orinancu Survey Office, Southampton, by Capt. A. K. Clarke, R. F., F. R. S., nuter the direction of Col. Sir Henry James, 1 k . F., F. 1t. s. * * Published by order of the Seerctary of State for War. London, 1866. 4to, 11. viij +287.
24. Clarke (Col. A. R.). On the figure of the earth.
L., E. and D. Phil. Mag., Aug., 1878, vol. 6, 11]. $=1-93$.
241. Fischer (A.). Die Gestalt der Erde und die Pendelmessungen.
Ast. Naeh., 1876, Bd. 88, 5. 81-3\%, and 247-252.
$2-\frac{1}{2}$. Hill (Geo. W.). Prize essay on the conformation of the earth.

The Mathematical Mouthly, edited ly J. D. Rumkle (Cimbridge, Mass.), lect, vol. 3, pp. 166-18:3.
249. La Place (P. S. de). Mémoire sur la figure do la terre. Addition au mémoirosur la figure de la terre.

Mémoires de l'Acalémie royale des sciences do l'Institut de France. 1817, t. 2, pl. 137-184, et $1<18$, t. 3, 111. 4-9-502.
2.). Méchain rt Delambre. Baso du systìme métrique Ifeimal, ou mesnre de l'are dn méidien compris entre les paralleles de Dunkerque et Barcelone, exécuté en 179% et anuées suivantes, par MM. Méchain et Delambre. * * * 3 vols., 4 to. T. 1. Paris, jan., $1806,1 p$, $\mathrm{ij}+551$; t. 2 , Paris, juil. 1807, pl. xxiv+ ${ }^{2} 44$; t. B, Paris, nov., 1810, pp. $16+701+6 ?$

25ıㄴ. Paucker (M. G. von). Die Gȩstalt der Erde.
Bulletin de la classe phessico-mathématigue de l'Académie Impérialo des Sciences de St.-Pétersbonrg. 185゙ 49-89 and 225-249.

25\%. Peirce (Chas. S.). On the deduction of the ellip. ticity of the earth froul pendulnm experiments.

Report of the Superintendent of the U. S. Coast and Geodetic Survey, 1881. Appendix No. 15, 11 . 44:-456.
25. Pratt (J. H.). On the degree of uncertainty which local attraction, if not allowed for, occasions in the map of a conntry, and in the mean fignre of the earth as retermined by georlesy; a method of obtaining the mean figure free from ambirnity low a comparison of the Anglo-Gallic, Russian, and Indian ares ; and speculations on the coustitution of the earth's crust.
Proc. Roy. Soc., 1863, vol. 13, 1p. 253-276.
26. Schubert (Gen. T F. de). Essai d'une détermina tion re la réritable figure de la terre. (1 platu.) Ménı. de l'Acanl. Imp. des Sciences de St.-Pétersbourg, 1859, t. 1, No. 6, 4to, 32 pp .
27. Schubert (Gen. T. F. de). Sur l'iufluence des attractions locales dans les opérations grodésiques, et particulièrement dans l'are Scandinaro Russe.

Ast. Nach., $1860, \mathrm{Bd} .52$, S. $321-36^{\circ}$.
2४. U. S. Coast and Geodetic Survey. Formula and factors for the compntation of geodetic latitudes, longitndes, and azimuths. (3d edition.)

Report of the Superintendent of the U. S ('uast aud Geodetic Survey, 1884. Appendix No 7, 11p. 3:3-375.

LENGTH OF THE SECONDS PENDOLOM.

2.). Baily (Francis). lenort on the pendulum experiments made by the late Capt. Henry Fostcr, 1R. N., in his scientific voyage in the years $1828-31$, with a view to determine the figure of the carth.

Mem. Roy. Ast. Soc., 1834, vol. 7. 4to, $37 \mathrm{~S}^{\circ} \mathrm{I} 1 \mathrm{l}$.
2.13. Basevi (J. P.) and Heaviside (W. J.), Details of the pendnlnm operations by CaptainsJ. P. lSasevi, R. E., and W. J. Heaviside, R. E., and of their reduction.

Acconnt of the operations of the Great Trigonometrical Survey of India. Vol. 5. Calcutta, 1879. 4 to, pp. $1 \times 1 \mathrm{j}+302+259+68+16+126$, and 1δ plates.
Bessel (F. W.) See 1. 131 of No. 1, above.
Biot (J. B.). See No. 20 $\frac{1}{3}$, above.
29 ? Borenius (H. G.). Ueber die Berechwngg ler mit dem unveränderlichen Pendel zur Bestimmong der Abplattung der Erde angestellten Beobachtungeu.
Bull. do la el. phys.-math, de l'Acad. Imp. des Sciences de St.-Pétershourg, 1843, t. 1, cols. 1-29.
Fischer (A.). Sice No. $\frac{2}{2} \frac{1}{4}$, above.
Hill (G. W.). See [. 3:39 of No. $5 \frac{1}{3}$, below.
30. Kater (Capt. Henry). An account of experiments for letermsuing the length of the pendulum vibrating seconds in the latitude of Londou.
Phil. Trans., 1818, pp. 33-102.
31. Kater (Capt. Heury). An account of experiments for determining the variation in the length of the pendulum vibrating seconds, at the principal stations of the Trigonomotrical Survey of Great Britain.

1'lil. Trans., 1819, pp. 337-508.
12. Mathieu (C. L.). Sur les expérienees du peulule, fitites par les navigatenre espagnols, en dillerens jointes duglobe.

Connaissance des Tems, 1816. Additions, pl. 314-341.
33. Mathieu (C. L.). Rósultats les experiences faites avec des pendules do comparaison amx iles Malonines et a la Nomvelle-ITollanle.

Conn. des Tems, 1826. Additions, 11. 200-307.
Nyrén (Magnus), Sce p. 57 of No. 104, below.
Paucker (M. G. von). See No. 2.) $\frac{1}{2}$, above.
Peirce (Chas. S.). Sec No. 25_{4}^{3}, above.
Peters (C. A. F.). Ser p. 170 of No. 109, below.
34. Poisson (S. D.). Sur le mouvement du pendule dans un milien résistant.

Connaissance dos 'Tens, 1834. Additions, pp. 18-3:3.
35. Sabine (Sir Edward). An account of experiments to determine the figure of the earth, by means of the pendulum vilrating seconds m different latitudes; as well as on varions other sulbjects of philosophical inquiry. By Edward Sabine, captain in the royal regiment of artillery.
Printed at the expense of the Board of Longitude, London, 182\%. 4to. pp. xviij+5ll.
36. Sabine (Sir Edward). Experiments to determine the ditlerence in tho number of vibrations marle by an invariable pendulum in the Royal Oloservatory at Greenwich, and in the louse in London in which Captain Kater's oxperiments were made. Phil. Trans., 1829, part 1, pp. 8:3-102.
37. Sabine (Sir Edward). On the relluction to a vacumm of the vibrations of an invariable pendnlum.

Phil. Traus., 1829, part 1, Pp. 207-239.
38. Saigey (J. F.). Conpraraison II's observations du pendule a diverses latitudes; faites par MM. Biot, Kater, Sahine, de Freycinet, et loperry.

Bulletin des sciences mathémationes, astronomiques, physiques et chimiques. Réligé par Saigey. D'remière section du Bulletin miversel des sciences et de l'industrie, publiós sons la direction du lbaron de Fernssac. 'T. 7, pp. 31-43 and 171-184. Paris, 18:77. 8vo.
381. Stokes (Sir George Gabriel). On the variation of gravity at the surface of the Eartly.

Transactions of the Cambridge (England) Philnsophical Socicty, 1849, vol. 8, plo. (if2-695. Also, Mathematical and Physical Papers. By G. G. Stokes. C'ambridge, 1883. Vol. 2, 1p.131-171.
39. Unferdinger (Franz). Das Pendel als georlitisches Instrument. Ein Boitrag zur Boförderung des Sturliume der Scliwerkraft, Grunert's Arehiv, 1869, 49 Theil, pp. 309-331.

3912. Delambre et Bürg. 'Tathles ast ronomitues publiras
 partic. Tabjes dn soloil, par M. Jelambere 'Tisbles de la lune, par M. Biarg. P'aris, lafic. 4to. l'ages not mumbered.
3913. Hansen (P. A.) il Olufsen (C. F. R.). Tables dı soleil, oxcentés d'apres les oritres de lat Soneirar. Royale des Soiences de Copenhagne. Coproblatgre, 1×5\%. 4 t.o, I 65 Jp .
3914. Le Verrier (U. J.). I'hoorieet tables du monvement apparent da solsil.

Amales de l'Observatoire Impérial de Paris,

42. Adams (J. C.). On new tables of tho mong's parallax, to he substituted for those of Burkharilt.
Appendix to the Engrlish Nautical Almanac for 1856, pl. 3.̃-43.
43. Airy (Sir Geo. B.). Corrections of the elements of the moon's orhit, deduced from the lmar observa. tions made at the Rogal Observatory of Greenwich, from 1750 to 1830.

Mem. Roy. Ast. Soc., 1847-'48, vol. 17, Pp. 21-5\%.
44. Airy (Sir Geo. B.). Corrections of the elements of the moon's orbit, dednced from the lmar oliserviations made at the Rnyal Observatory of Greenwich from 1750 to 1851 . Being an extension of a preceding memoir * * * iprinterlinthe Mem. Roy. Ast. Soc., 1847-'48, vol. 17, pp. 21-í\%).

Mem. Roy. Ast. Soc., 1859- 60 , vol. 29, pp. 1-24.
45. Airy (Sir Geo. B.). Note on an error of expression in two memoirs of the astronomer royal in the corrections to the elemonts of the moon's orbit.

Month. Not., 1865, vol. 26, n. 26.
45 $\frac{1}{3}$. Burckhardt (J. C.). Tables astronomiques publifes par le 13 areau des Longitudes ile France. Tables de la luno, par M. Burckiardt * * "Paris, 181:2. 4to. Pages not numberen.
4ist $\frac{1}{2}$ Bürg (J. T.). Resultate der nenesten Untersuchungen iiber Mondstheorif des Herrn Professors uml Ritters Buirg.

Ast. Nach., 182:3, 13d. 2, N. 313-324.
45_{4}^{3}. Bürg (J. T.). Epoche dremittlern Liinge des Mon' des fiir 1759, jaihrliche Aendormug derselben, Gleichmer der Lïnge, dis von der Abplattuug der Eries ahhängt und Variation, nebst der darans folgenden Souncnparallaxe.

Ast. Nach., 1825, 13d. 4, S. 9-16 und 23-28.
46. Campbell (Jas.) and Neison (E.). On the determination of the solar parallax by means of the parallactic incepuality in the motion of the monn.

Month. Not., $18-n$, vol. 40, ple. 386-411 and 441-17:.
47. Campbell (Jas.) and Neison (Edmund). On the determination of tho valne of the parallactic inefuality in the notion of the moon.
Month. Not., 1-81, vol. 41, p1. 2533-264.
1N. Campbell (Jas.) and Neison (E.). On the value of the parallatetic inequality.

Montl. Not., 1881, vol. 41, P1. 41ĩ-419.
49. Campbell (Jas.) and Neison (E.). On the correction to the horizontal diameter of the moon, from the observations made between $18: 11$ and 1858 . Montli. Not., 1882, vol. 42. p1. 269-2i4.

50．Damoiseau（Baron de）．Tables de la lnne，formées par la seule théoric de l＇attraction，et suivant la division de la circonférence cn 400 degrés ；par M． le Baron De Damoiseau，＊＊＊Paris， 1824. 4to，pp．xij +90 ．
51．Damoiseau（Baron de）．Mémoire sur 1a theorie de la luve．

Mémoires présentés par divers savans a l＇Acadé－ mue rojale des sciences de l＇Institut de France． Sciences Math．et Phys．，tome 1，pp．313－598． 4to．Paris， 1827.
52．Delaunay（Ch．）．Théorie du monvement de la lune， par Ch．Delannar＊＊＊ 2 vols．，4to．Tome 1．Paris． 1860 ，pp．xxp +883 ；tome 2，Paris， 1867 ， 1p． $1 \mathrm{x}+931$ ．（These volumes are tomes 26 and 29 of the＂Mémoires de l＇Acalémie des Sciences de I＇Instıtut Impérial de France．＂）
53．Delaunay（Ch．）．Expressions numériques des trois coordonnées de la Inne．
Connaissance des Temps，1869．Additions，pp． 1－42．

5i．Hansen（P．A．）．Tables de la lune，construites d＇a－ près le principe Newtonien de la gravitation uni－ verselle，par P．A．Hansen，darecteur de l＇Observa－ toire Ducal de Gotha．Imprimé anx frais du gouvernement Britanuique．Londres，1857．4to， 1p． 511.
‥）．Hansen（P．A．）．Darlegung der theoretischen Be－ rechnung der in den Mondtafelu angewandten Störnngen．Erste Abhandlung．

Abhandlungen der Königlich Sächsischen Ge－ sellschaft iler Wissenschafteu，IE62，BCl． 9 ；Mathe－ matisch－physischen Classe，Bul．6，pp．91－497．
：iti．Hansen（P．A．）．Darlegnng der theoretischen Be－ rechuung der in deu Mondtafeln angewandten Störungen．Zweite Abhandlung．

Ahhandlnggen der Königlich Siachsischen Ge－ sellschaft der Wissenschaften，1864，Bd． 11 ；Mathe－ matisch－physischen Classe，Bd．7，1p1．1－399．
\therefore Hill（G．W．）．On the motion of the center of gravity of the earth and moon．

The Analyst，1878，rol．5，11．33－38．（Edited and published bs J．E．Hendricks，A．m．，at Des Moines，Iowa．）
5\％t．Hill（G．W）．Determination of the inequalities of the moon＇s motion which are prodnced by the figure of the earth：a supplement to Delannay＇s Iunar theory．

Astronomical papers prepared for the use of the American Ephemeris aud Nantical Almanac，vol． 3，p1．©01－344．（Washington， $1=84$ ．4to）．
万斤务．La Place（P．S．de）．Sur les inegalités lunaires dues à l＇aplatissement de la terre．

Connaissance des Tems，I893．Additions，pp． 219－225．
5x．Neison（E．）．On a supposed periodical term in the values fonnd for the coefficient of the parallactic inequality．
Month．Not．， 1832 ，vol．42，pp．3TE－382．
5．9．Neison（Edmund）．On the corrections required by flansen＇s＂Tahles de la Lune．＂

Menl．Roy．Ast．Soc．，1R24，rol．48，pp．283－418．

60．Newcomb（Simon）．Researches on the motion of the moon，made at the U．S．Naval Observatory， Washiugton．Part I．Reduction and discussion of observations of the monn before 1750．

Washington Astronomical and Meteorologica］ Observations for the year 187\％．Appendix II， 280 pp．4to．
61．Newcomb（Simon）．Investigation of corrections to Hansen＇s tables of the moon；with tables for their application．By Simon Newcomb＊＊＊ Forming Part III of Papers published by the Com－ mission on the Transit of Venus．Washington， 1876．4to， 51 pp ．
62．Newcomb（Simon）．A transformation of Hansen＇s Innar theory compared with the theory of De－ launay．

Astronomical papers prepared for the use of the American Ephemeris and Nantical Almanac，vol． 1，pp．57－107．（Washington，1882．4to）．
63．Plana（Jean）．Theorie du mouvement de la lune． Par Jean Plana，astronome royal et directeur de l＇observatoire＊＊＂Turin，1832． 3 vols．， 4 to． T．1，pp．xxiv＋ 94 ；t． 2 ，pp．viij＋865：t．3，pp． $\mathrm{rj}+856$.
64．Stone（E．J．）．Note on the coefficient of the paral－ lactic equation in the lonar theory．
Month．Not．，1863，vol．23，1． 210.
65．Stone（E．J．）．A determination of the coefficient of the parallactic iueruality，and a deluction of the valne of the sun＇s mean horizontal equatorial par－ allax from the Greenwich lnmar olservations， 1848－1866．（Alistract．）
Month．Not．，1867，vol．27，p．271．See also rol． 41，pp．24－33．
66．Stone（E．J．）．On the determination of the coeffi－ cient of the parallactic inequality in the expres－ sion for the moon＇s longitude．

Month．Not．，1880．vol．41，pp．24－33．
68．Stone（E．J．）．Note ou some points connected with the determination of the coefticient of the paral－ lactic inerpuality．

Month．Not．，1881，rol．41，pp．381－384．
68．Stone（E．J．）．On some systematic errors in the de－ termination of the semidameter of the moon from the Greenwich olsservatious，1750－1840．
Month．Not．，18E1，vol．42，pn．51－54．
69．Stone（E．J．）．Note on Messrs．Camplell and Nei－ son＇s paper on the parallactic inequality，in the Supplementary Number of the Monthly Notices． Mouth．Not．1881，vol．12，pp．64－66．
70．Stone（E．J）．Note on Mr．Neison＇s paper ont the corrections to Adam＇s semidianeter of the moon． Month．Not．，18＊2，vol．42，pp．301－304．
71．Stone（E．J．）．Curves slowing the chauges in the adopted diameter of the moon as given by the observations in the Greenwich Lunar Reductions， 1750－1830．

Mouth．Not．， 1882 ，vol．42，pp． $374-378$ ．I plate．

LUNAR Parallat．

72．Breen（Hugh）．On the constaut of the moon＇s liori－ zontal erfuatorial parallax，as deduced from obser－ vations made at the Cambridge Oliscrvatory and the Royal Olnservatories of Greenwich，Edinburgh， and the Cape of Good Hope．

Mem．Roy．Ast．Soc．，1863，rol．32，pp．115－178．
73. Henderson (Thos.). The constant quantity of the moon's equatorial horizontal parallan, deduced from observations ntald at Greenwich, Cambridge, and the ('ilue of Good Hope in 1 risit and 1833.
Mem. Ros. Ast. Soc., 1537, rol. 10, pp. 2s.3-294.
i4. Olufsen (C.F.R.). Untersuehngen iiber den Werth der Mondsparallaxe, die ans den in der Mittedes vorigen Jahrlundertsaugestellten correspondirendeu Beobachtungen ahgeleitet werden kann.

Ast. Nach., 183\%, Bd. 14, s. 20\%-v26.
\%5. Stone (E. J.). Constant of lumar parallax. Mem. Rof. Ast. Soc., 186ī. vol. 34, 111. 11-16.

PREGESSION OF THE EQCINONES

76. Bessel (F. W.). Ueber die Abänderung. welche die Bestimmong der Vorriickungr der Nachtgleichen, darch die Königsberger Fnuiamental-Cataloge erhält.

Ast. Nach., 1826, Bd. 4, S. 401-406.
iл. Dreyer (J. L. E.). A new determination of the constant of precession.
Copernicus (Dublin), 1882, rol. 2, pp. 1:35-155. For a review of this paper bs E . Schönfeld, see Vierteljahrsschrift der Ast. Gesell., 188:, 17 Jahrgang, S. 249-259.
78. Hanseu (P. A.). Ueber die Reduction der Oerter der beweglichen Gestirne anf die gleichzeitige Ecliptik oder den gleichzeitigen Aequator und das dazu gehürige Aequinox.

Ast. Nach., $1852, \mathrm{Bd} .35, \mathrm{~S} .97-156$.
79. Lehmann (W.). Elensents for precession, etc., in lis paper entitled "Die Elemente der Bahnen der acht Hanptplaneten fiir die FundamentalEpoche 1800, Jan. 1, nebst ihren differentiellen Sticular-Aeuderungen erster und zweiter Ordung."

Ast. Nach., 1866, Bd. 68, S. 171-172.
80. Le Verrier (U. J.). Elements for precession, etc.

Annales de l'Observatoire Impérial de Paris, 1856 , tome 2, p. 174 ; 185s, tome 4, p. 49.
81. Newcomb (Simon). Reduction of the constants of precession found by Bessel, Strure, and Nyrén to a common equinox.
Vierteljahrsschrift der Astronomischen Gesellschaft, 13 Jahrgangg, $137 \mathrm{E}, \mathrm{S} .107-110$.
と.2. Nyrén (M.). Déternination du eoefficient constant de la précession an moyen d'rtoiles de faible éclat. Bulletin de l'Acarl. Imp. des Sci. de St.-Pétershourg, 18\%0, t. 14, cols. 542-5̄4; Mélanges Math. et Astron., 1867-1872, t. 4, pp. 590-632.
-3. Serret (J. A.). Thérie du mourement de la terre antour de son centre de gravité.

Annales de l'Ouservatoire Impérial de Paris, 1859, t. 5, Mémoires, 1p. 239-336.
2. Stockwell (John N.). [On the precession of the equinoxes and the obliquitry of the celiptic] in pp. 1:1-176 of his paper entitled "Memoir on the secular rariations of the elements of the orbits of the eight principal planets, " * "" (May, 1872.)

Smithsonian Contributions to Knorledge, 18ヶ3, vol. 18 , pp. xriij +199
2.5. Struve (O.). Bralimumuin der Constanto der I'ra'o cession, mit Buriicksichtighug ler eigenen BewoLung des Somensystems.
Mrim. de l'Acad. 1 mp. des Sciencer de St.-I'eturnbourg, Sci. Matlı. et Plyse., 1E44, t. 3, pj. 17-12.1.
86. Struve (Ludwig). Bestimmung der Constante der Priecession und ler eigenen Bewegnngr des Sonncusystelis.

Mém. de l'Acad. Imp. dees Sei. de St.-P'éters. bourg, 1ent, tome 35, No. 3, 33.1 fr .

ABERRATION AND NTTATIOS

87. Airy (Sir Geo. Biddell). On a supposed alteratiou in the amount of astronomical aberration of light, produced by the passage of the light through a considerable thickncss of refracting medium.
Proc. Roy. Soc., 1871, vol. 20, 111. 35-39; 1573, vol. 21, p. 121; Greenwich Astrmomical Observations, $1871, p p$. cxii, cxix-caxxii (1 plate), and 59-61
88. Auwers (A.). Ueber deu Werth der AberrationsConstante nach deu Beobachtungen von Molyneux.
Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zı Berlin, 1869, pp. 611-646.
89. Ball (L. de). Bestimmnng der Nutationsconstante. Ast. Nach., 1885, Bd. 112, S. 33-42.
90. Brinkley (Rev. Dr. John). All account of obserrations made with the eight feet astrouomical circle at the obserratory of Trinity College, Dullin, since the beginning of the year 1818, for investigating the effects of parallax and aberration on the places of certain fixed stars; also the comparison of these with former obserrations for determining the effects of lunar untation.
Phil. Trans., 1821, pp. 327-360.
91. Busch (A. L.). UTatersuchung der Bradley'schen in Kew und Wansted angestellteu Beobachtungen zur Bestimmong der Aberration und Nutation.

Ast. Nach., 1836, Brl. 13, S. 329-333.
92. Dowaing (A.M. W). Discussion of the observations of γ Draconis, made with the Greenwich retlex zeuith tube during the rears 1855 to $18 \% 5$, inclusive.

Month. Not., 1882, rol. 42, pp. 3:55-344.
03. Gill (David). Notes on Nrrér's determination of the constant of aberration.
Note to accompany correspoudence on the subject of Nyren's determination of the constant of aberration.

Month. Not., 18=4, rol. 44, pp. 2i5-27 and 202.
94. Hall (Asaph). The constant of aberration.

The Astronomical Journal (Boston, Mass.), 1883, rol. Е, 1pp. 1-5 and 9-13.
95. Henderson (Thomas). On the parallar of Sirius. Mem. Roy. Ast. Soc., 1839, rol. 11. 1p. 239-248.
96. Henderson (Thomas). The parallax of x Centanri, dednced from Mr. Maclear's obserratious at the Cape of Good Hope, in the years 1839 and 1840. Mem. Rot. Ast. Soc., 1242 , vol. 12, pp. 329-372.

97．Küstner（F．）Nene Methode zur Bestimmung der Aberrations－Constante，nebst Untersuchungen über dıe Veränderlichkeit der Polhöhe．
Astronom．Beob．anf der Königlichen Sternwarte zı Berlin，18さ8， 59 рp．Reviewch lys J．Bausch－ inger ${ }^{111}$ V．J．Ast．Gesell．，1888．Bd．23，pp． 251 － 262.

98．Lindenau（Bernhard von）．Versuch einer nemen Bestimmung der Nutations－und Aberrations－ Constanten aus beobachteten Geraden－Aufsteiguu－ gen des Polaris．
Abhandhngen der Königlichen Akad．der Wis－ senschaften zu Berlin，1841，math．Abhand．，pp． 1－63．
99．Lindhagen（Daniel George）．De numeru constante aberrationis ct parallaxi annua stellae polaris ex ascensionibns rectis bujus stellae，quae in specula I＇ulcovensi aunis 1842－1844 tuloo culminatorio Er－ teliano observatue sunt deductis．

Mém．de l＇Acad．Imp．des Sci．de St．－Péters－ bourg，Sci．Math．et Plys，1853，t．5，pl．323－35f．
$99 \frac{1}{2}$ ．Lundah1（Gustavus）．Specimen academicum．De numeris nutationis et aberrationis constantibus， atyue de parallaxi amma stellae Polaris，fuales deducuntur ex declinationibus stellae Polaris Dor－ pati ammis 18：2－18：38 observatis．Quod renia amplissime Facultatis Philosoplicas ad Imperi－ alem Alcxaudrean in Fennia Universitatem P． P．Gustavus Lnudahl pliil．doctor，respondeute Johanne Henrico Eklöf，satacnndensi．In audit． philos．die xxvij Aprilis MDCCCXLII．H．A． M．S．IIelsing forsiac．
100．Maclear（Sir Thomas）．Determinations of the parallax of α^{2} and α^{2} Centanri，from obscrvations mate at the Royal Ouservatory，Cape of Good Hope，in the gears 184：－＇43－＇44，and 1843.
Meni．Roy．Ast．Soc．，1851，vol．20，pp．－0－98．
101．Maclear（Sir Thomas）．Investigation of the paral－ lax of β Centaur，from olservations made at the Royal Observatory，Cape of Goorl llope．
Mem．Roy．Ast．Soc．，1852，vol．21，pp．141－152．
102．Main（Rev．Robert）．On the values of the con－ stants of mintation and aberation，and of the parallax of γ Draconis，as ileduced from the obser－ vations made with the tweuty－five－foot zenith tulse at the Royal Ohservatory，Grcenwich．

Nlem．Roy．Ast．Sac．，1855，vol．24，pl．14i－187．
103．Main（Rev．Robert）．On the value of the constant of aberration as deduced from eight sears＇obser－ vations of y Draconis，from 1852 to 1859 ，inclusive， made with the reflex zeuith tube at the Royal Ohservatory，Greenwich．
Mem．Ros．Ast．Soc．，1859－＇60，vol．29，pl． 169－190．
1033．Maxwell（Jas．Clerk）．On a dynamical top，for exhibiting the phenomena of the motion of a system of invariable form about a fixed point，with some suggestions as tu the earth＇s motion．
Trans．Roj．Soc．of Edinūurgh，1857，vol．21，

104．Nyrén（Magnus）．Bestınımung der Nutation der Erlaclise．

Mén．de l＇Acad．Imp．des Sci．de St．－Péters－ bourg，1e72，tome 19，No．2， 64 pl ．

105．Nyrén（Magnus）．Die Polhöhe ron Pulkowa． Mém．de l＇Acad．Imp．des Sci．de St．－Péters－ lourg，1873，t．19，Ňo．10， 40 pp.
106．Nyrén（Magnus）．L＇aberration des étonles fixes． Mém．de l＇Acad．Imp．des Sci．de St．－Pétersbourg， 1883，t．31，No．9， 47 pp．
107．Nyrén（Magnus）．Renıarques sur les＂Notes on Nyrén＇s determination of the constant of aberra－ tion＂de M．Gill．
Month．Not．， 1884 ，vol．44，pp．277－282．
108．Nyrén（Magnus）．Zur Aberration des Fixsterne． Mélanges mathématiqnes et astronomi！ues du Bulletin de l＇Académie de St．Pétershonrag，1stos，t． 6，1p．（iis．3－667；Bulletin Astronomique，18E8，t．5， pp．434－435．
109．Peters（C．A．F．）．Numerus constans mutationisex ascensionibus rectis stellae polaris in specula Dor－ patensi anuis $18: 22$ ad $18: 38$ observatis dednctus． Adjecta est disfuisitio theoretica de formula nuta－ t：onis．

Mém．de l＇Acarl．Imp．des Sci．de St．－Péters－ loourg，Sci．Matl．et Phys．，1̌44，t．3，pp．125－227．
10212．Peters（C．A．F．）．Uber dic Gesetz der Rotation der Erde（diese als einem Körper mit 2 gleiehen Hanptaxen ansehend）um cino durch den Schwer－ munct gehende Axr，dio wicht mit der dritten Hauptaxe zusammenfiillt．
Ast．Nach．，1844，Bd．22，S．124－123．
110．Peters（C．A．F．）．Resultate ans Beobachtnugen des Polarsterns am Ertelschen Verticalkreise der Pulkowater Sternwarte．
Ast．Nach．，1844，Ba．22，S．71－91；，103－108， 119－128．Sce alsu Méri．de l＇Acad．Imp．Iles Sci．de St．－Prtersbourg，Sci．Math．et Plys，les． 3 ，t．5，pl． 119－122．
111．Peters（C．A．F．）．Recherches sur la parallaxe des étoiles fixes．

Mén．de l＇Acad．Imp．des Sci．de St．－Péters－ bourg，Sci．Matlı．et Phys．，1と5\％3，towe 5，M1．1－180
112．Richardson（W．）．Determination of the constant of the aberration of light，from 4119 observations made at the Royal Observatory，Greenwich， during the years $1825,1826,1827$ ，and 1828 ，with the two mural circles of Troughton and Jones．
Mcm．Roy．Ast．Soc．，l82s，vol．4，1p．59－127．
113．Robinson（Rev．Dr．T．R．）．On the constant of lunar nutation，as giveu by the mural circle ob－ servations of Mr．Pond，from 1812 to 183% ．

Mem．Roy．Ast．Soc．．1838，vol．11，pp．1－19．
114．Stone（E．J．）．A determination of the constant of nutation from the observations in N．P．D．of Po laris，Cepuei 51，and δ Virse Minoris，made with the transit circle of the Royal Observatory， Greenwich，1851－1865．Addendum．A determi－ nation of the constant of nutation from the observations of Polaris in R．A．made at the Roral Ouservatory，Grecuwich，from lo5l－1：67．
Mém．Roy．Ast．Soc．，1868，vol．37，pp．75－249．
115．Struve（F．G．W．）．De numero constanti aberra tionis et parallaxi annua fixarum ex observatio nibus stellarum circumpolarinm in ascensione oppositarum．

115．Struve（F．G．W．）－Continuerl．
F．G．WV．Struve．Olservationes astronomicas， institutas in specula［＂mbersitatis eatesareae Dor－ natensis，publici juris facit Sematus Unirersitatis． Vol．3，Olserrationes annornm 1820 et le21，pl． li－hxxx．（Dorpati，leve，e by $9 \frac{9}{6}$ inches．）
116．Struve（F．G．W．）．Sur les constantes de l＇aber－ ration et de la nutation．

Ast．Nach．， $18!1, \mathrm{Bd} .18, \mathrm{~S} .289-294$.
117．Struve（F．G．W．）．Rapport sur le mémoire de M． C．A．F．Peters：Numerns constans mutationis ex ascensionibus rectis stellae polaris in specula Dor－ pateusi ab anvo 1822 ad 1832 observatis deductus． Adjecta est disquisitio theoretica de formula untationis．

Acar．de St．－Pétersbourg．Bull．Sci．，184：，t．10， cols．145－160，Also Ast．Nach．，1843，Bd．21，S． 81－94．
11－．Struve（F．G．W．）．Sur le coefficiont constant dans l＇aberration des étoiles fixes déduit des oh－ servations qui ont été exécntées à l’obscrratoire de Ponlkora par l＇iustrument des passages de Repold 夭́tahli dans le premier vertical．
Mén．de l＇Acad．Imp．des Sci．de St．－Péters－ Murar，Sci．Math．et Phys．．1244，t．3，pp．229－205．
119．Struve（Otto）．Sur l＇exactitule quí doit être at－ tribué ala valeur lu coefficient coustant de l＇aberration，détermınée à Poulkova．

Couptes Rendns，1ェン2，t． 75, pp．795－ 99 ．
120．Villarceau（Yvon）．Sur la coustante de l＇aherra－ tion et la vitesse de la lumière，considérées dans leurs rapports avec le monvement absolu de trans－ lation du ssst̀ेme solaire．

Comptes Reudus． $1 \Xi 72$, t． $7 \overline{5}$ ，pp．Ej $4-860$ ．
121．Villarceau（Yvon）．Recherches sur la théorie de l＇aberration．et considérations sur l＇iuflnence du mouvement absoln du système solaire，dans le phénomène de l’aberration．

Comptr，Remlus，1575，t．81，pp．16．5－171．
122．Villarcean（Yvon）．Théorie de İaberration，daus Iaturelle il est tenu compte du monvement du ＊ystiome solaire．

Counaissance des Temps，18\％？．Additions，pp． 3－07．

ECLIPSES OF JCPITER＇S S．ITELLITES．
123．Bailly（J．S．）．Mémoiresur lesinfogalités de la Iumière des satellites de Jupiter，sur la mesure de leurs diamères；et sur un moren，aussi simple que commorle，de rendre les obserrations compara－ bles，en remédiaut à la différence des vues et des Innettes．

Hist．de l＇Acad．Roy．des Sci．（Paris），17\％1， Mém．pp． ²～0－667．2
124．Bailly（J．S．）．A letter to the Rer．Neril Maskelyne， F．R．S．，Astronomer Rosal，from Mr．Baills，of the Koyal Academy of Sciences at Paris：containing a proposal of some new methods of improving the theors of Jupiter＇s Satellites．Trauslated from the French，with the original uuderneath．

Phil．Trans．，1773，pp．185－216．
12i）．Cornu（A．）．Sur la possibilite d＇accroitre dans une grand＂proportion la précision des obserrations des éclipses des satellites de Jupiter．

Comptes Reudus， $1=8 \%$ ，t． 96 ，pp．1609－1615．

12i．Cornu（A．）ef Obrecht（A．）．Eludes expérimen－ mentales relatives it I＇observation photométríque des felipses des satellites do Jupiter． Comptes Rendus， $1=-3$ ，t．9f，［1］． $1 \sim 1 \bar{s}-1 \sim 01$ ．

127．Delambre（J．B．J．）．Tables 6cliptirues dess sal（r］． lites de Jupitur，d’après la thérice du．M．le Mar－ quis do La Place，et la turalito dess olmarration faites depuis 1662 jusinn＇il l＇au 1－0\％：par M．Del－

123．Downing（A．M．W．）．The eelipues of Jupiturs satellites．［Being an account of Glasenapp＇s in－ vestigation of the eclipses of Jupiter＇s satellites， and the light equation．］

The Observatory，（London）， 1859 ，rol． $12,1 p$ ． 173－178 and 210－213．

129．Glasenapp（S．）．Iurestigation of the eclipses of Jupiter＇s satellites．A llsisertation for thr degreer of master of astroumom，be S．＇asemapp．St． Petersburg，10\％4．8ro，plo．ixtlios．（In the Ruse sian language．）
12912．Obrecht（A．）．Etude sur les felipses dess satelliten de Jupiter．
Anuales de lobservatoire de Paris，Mémoires，t． 18，p1．H．1－H．100．（Paris，IE－．．．）

THE TELOCITY OF LIGHT

130．Cornu（A．）．Détermination nourelle de la vitesse de la lumiere．（ 1 plate．） Jourual de l＇École Polytechaiqne publie par le Conseil d＇Instruction de cet établissement． $\mathbb{H}^{\text {rme }}$ cahier，tome 27 ，pp．13：3－1 30 ．Paris，1～it．4to．
131．Cornu（A．）．Mémoire sur la déterminatıou de la vitesse de la lumière eutre lobservitore（de Paris）et Montluéry．（\％plates），315 pip．

Aunales de l＇Ohserratoire de Pari－，Mémoires， tome 13，pp．A．1－A．315．Paris，1＝it6．fto．
132．Fizeau（H L．）．Sur uue expérieuce relatire à la vitesse de mopagation de la Inmière．

Comptes Rendus，1－49，t．29，p1．90－92．
133．Foucault（Léon）．Détermination expérimentale de la vitesse de la lumiere；parallaxe du soleil． Comptes Rendns，120\％，tome 55，pp．501－503． Also Recueil des Travaux Scientifiques de Léou Foucanlt，pl．216－218．
134 Foucault（Léon）．Détermination expérimentael fe la vitesse de la lumière；description des ap－ pareils．

Comptes Rendus， 1862 ，tome 5\％．pp．792－796． Also Recueil des Travanx Scientifitues de L． Foucanlt，pp．219－226 and 546－54E．［2 plates and many details uot in Comptes Rendus．］
135．Foucault（Léon）．Recueil des traranx scientifiques de Léon Foncault＊＊Publié par Madame Veure Foncault sa mère．Mis en ordre par C．－M． Gariel＊＊Et précédé d’uue notice sur les reurres de L．Foncanlt par J．Bertrand．Paris．
 1s aud 19 ，plates．
136．Helmert（ \mathbf{F}, \mathbf{R} ．）．Ueber eine Andentung constauter Fehleriu Cornu＇s nsuester Bestimmung der Licht－ geschwiudigkent．

Ast．Nach．， $1876, \mathrm{Bd} .87$, S $1 \because 3-126$
137. Michelson (Albert A.). Experimental determination of the velocity of light. (12 figs.)
Proceerl. of the Amer. Association for the Adrancement of Science, loi9, pp. 124-160.
138. Michelson (Albert A.). Experimental deterinination of the velocity of light, made at the U. S. Naral Academy, Annapolis. (June and July, 18\%9.) (15 figures.)

Astronomical Papers prepared for the use of the Amer. Ephem. and Nantical Almanac, vol. 1, pp. 109-145. (Washington, 188.2. 4to.)
139. Michelson (Albert A.). Snpplementary measures of the velocities of white aud colored light in air, water, and carbon disulphide * * *. (3 figs.)
Ast. Papers of Amer. Ephem., vol. 2, pp.231-258.
140. Newcomb (Simon). Measures of the velocity of light made uuder direction of the Secretary of the Navy during the sears 1880-'82. (7 plates.) Ast. Papers of Amer. Eph., vol. 2, pp. 107-230.
141. Young (Jas.) and Forbes (G.). Experimeutal determination of the velocits of white and of colored light.
Phil. 'Trans., 1882, pp. 231-289.

MASSES OF THE MOON AND PLAN゙ETS.

142. Airy (Sir Geo. B.). Ou the corrections in the elements of Delambre's solar tables required by the observations made at the Royal Observatory, Greenwich.

Phil. Trans., 1828, pi). 23-34.
143. Airy (Sir Geo. B.). Coutinuation of researches into the value of Jupiter's mass.

Mem. Roy. Ast. Soc., 1838, vol. 10, pp. 43-47.
144. Asten (E. von). Resultate ans Otto voo Struve's Beobachtungen der Urauustrabanten.

Méru. de l'Acad. Imp. des Sci. de St.-PEtersbourg, 1872 , t. 18 , No. $5,26 \mathrm{pp}$.
145. Asten (E. von). Untersuchungen ïber die Theorie des Eucke'schen Cometen. II. Resultate aus deu Erscheinungen, 1819-1875.

Mém. de l'Acad. Imp. des Sciences de St.-Pétersbourg, 1878, tome 26, No. 2. 4to, 125 pp.
146. Backlund (O.). Comet Encke, 1865-1885.

Mém. de l'Acad. Imp. des Sciences de St.-Péterybourg, 1886 , tome 34, No. 8. 4 to, 43 pp.
147. Bessel (Friedrich Wilhelm). Bestimmung der Masse des Jupiter.

Astronomische Untersuchungen, Bd. 2, pp. 1-94. (K̈̈nigsberg, 1842. 4to.)
14. Bessel (F. W.). [Mass of Saturn] in his paper cutitled " Zweite Fortsetzung der Untersuchungen über die Bewegnng der Hugenischen SaturnsSatelliten."

Ast. Nach., 1833, Bd. 11, S. 24.
149. Bond (G. P.). Beobachtungen anf der Sternwarte jn Cambridge (Nord-America) vou dem Director Herrn Professor Bond gemacht.

Ast. Nach., 1850, Bd. 31, S. 35-42.
150. Bouvard (A.). Tables astronomiques publiees par le Burean des Lougitudes de France, coutenaut les tables de Jupiter, de Saturne, et d'Uranns, construites d'après la théorie de la mécanique coleste ; par M. A. Bouvard * * * Paris, 1821. 4to, pp. xxviij+110.
151. Burckhardt (J. C.). Sur les masses des Planètes. Conn. des Tems, 1816. Additions, pp. 341-344.
152. Encke (J. F.). Ueber die Babn der Vesta. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, 1826, Mathematische Klasse, Pp. 257-269.
153. Encke (J. F.). "Tafel der successiven Änderungen der Planeteu-Massen" on p. 5 of his paper eutitled "Über den Cometen von Pons." $4^{\text {te }}$ Abhandlung. Abhandlungeu der Königlichen Akademie der Wissenschaften zu Berlin, 1842, pp. 1-60.
154. Encke (J. F.). [Masses of 7 prineipal plauets.] (A long list, with anthorities.)
Ast. Nachr., 1812, BI. 19, S. 187-190. (Not so complete as Encke's table in the Abhandlnngen of the Berlin Akad., 1842, p.5.)
155. Encke (J. F.). Sur la masse de Mercure. Comptes Rendus, 1843, tome 16, p. 196; Ast. Nachr., 184?, Bd. 19, S. 186 and 189; Abhandl. der Berlin, Akad., 18+2, Math. Abhandl., p. 56.
156 Encke (J. F.). Mass of Mercurs ; in pp. 46 to 52 of his paper, Über den Cometen von Pons, $6^{\text {te }}$ Abhandlung.
Abhand. der Königlichen Akademie der Wissenschaften zu Berlin, 1851, Math. Abhand., pp. 25-52.
157. Haertl (E. De., otherwise E. Frhr. v. Haerdtl). Sur l'orbite de la comète périodique de Winnecke et sur nne nouvelle détermination do la masso de Jupiter.

Comptes Rendiss, 1888, tome 107, pp. 588-590; Ast. Nachr., 1828, Bd. 120, S. 257-272.
157혈 Haerdtl (Eduard Freiherrn von). Die Bahn des periodischen Kometen Winnecke in den Jaliren $1858-1886$, uelost einer neuen Bestimmung der* Jupitersmasse.

Denkschriften der Kaiserlichen Akademie der Wissenschaften (Wien), Mathem.-naturw. Cl., 1839, Bd. 55, pp. 215-30ヶ.
158. Hall (Asaph). Olservations and orbits of the satellites of Mars. With data for ephemerides in 1879. By Asaph Hall, Prof. of Math., U. S. Navy. Rear-Admiral Joln Rodgers, U. S. Nary. Sup't of the Naval Observatory. Washington : Government Printing Office, ľ78. 4to, 46 pp .
1581 $\frac{1}{2}$ Hall (Asaph). The orbit of Lapetus, the outer satellite of Saturn.

Washington Observations, 1882, Appendix I. 4 to, 82 pp .
159. Hall (Asaph). The orbits of Olveron and Titauia, the outer satellites of Uranus.
Washington Observations, 1881, Appeudix I. 4to, 33 pp .
160. Hall (Asaph). Orbit of the satellite of Neptune. Washington Observations, 1881, Appendix II. 4to, 27 pp .
161. Hall (Asaph, Jr.). Determination of the orbit of Titan and the mass of Saturu.
'Iransactions of the Astronomical Observators of Yale Uuiversity, vol. 1, part 2, pp. 107-148. New Haven, 1889. 4 to.
162. Hill (Geo. W.). [Mass of Venus] on pp. 2 and 36 of his wrork entitled "Tables of Venus, prepared for tue use of the American Ephemeris and Nantieal Almanar." Puh. lis antlority of the Spe. of the Nary. Washington, 1872. 4to, Pp. $3 \boldsymbol{3}+\cdots 1$.

163．Hind（John Russell）．Note upon the mass of the planet Neptune，as dedneed from observations of liss satellite．

Montl．Not．，1－19．vol．9，1p．20：－203．
164．Hind（J．R．）．On the satellite of Neptune． Month．Not．，1Ej4，vol．15，P1p．46－42．
1G4雲．Kempf（P．）．Untersuchungen iiber die Masse des Jupiter．

Publicationen des Astrophrsikalischen Observa－

105．Krueger（A．）．Untersuchung iiber die bahu des Planeten Themis，nelost einer nenen Bestimmmeg der Anziehung des Jupiter．Abdruck ans den Abhandlungen der Finnischen Societiit der Wis－ senschaften．Fortsetzung．Helsingfors，1873．4to， 15 pp ．
166．La Grange（Joseph Louis）．Ueber die Abnahme der Schiefe der Eeliptic．

Astronomisches Jahrbuch，1782，pp．104－11\％． （Berlin，1759．）
16i．La Grange（J．L．）．［Masses of Mercury，Venns， Eartl，Mars，Jupiter，and Saturu］in his paper entitled＂Theorie des variations sceulaires des élémens des planètes．Seconde partie．＂

Noureanx Mémoires de l＇Académie Royale des Sciences et Belles－Lettres．（Berlin．）Anvés 1720． 1．190．Also，Pp．181，183，and 186.
168．Lamont（J．）．Vialne of the mass of Uranus，de－ duced from observations of its satellites，made at the Royal Observatory of Munich during the year 1837.

Mem．Ror．Ast．Soc．，1840，vol．11，pp．51－60．
169．Le Verrier（U．J．）．Recherehes sur lorbite de Mercure et sur ses perturbations．Détermination de la masse de V́énus，et du diamètre du soleil．

Journal de Matliématínes Pures et Anplíquées， on Recueil Meusuel de Ménoires sur les Diverses Parties des Mathématiques；publie par Joseph Lionville．T．8，anmée 1＊43，pp．27：3－359．
170．Le Verrier（U．J．）．Theorie et tables iln mouve－ ment dr Nereure．

Aunales de l＇Obserratoire Impéria］de Paris Mémoires，t．亠，pp．1－19\％．（Paris．1－．59．）
1\％1．Le Verrier（U．J．）．Théorie et tables du moure－ ment ale Vénus．

Annales de l＇Onservatoire Impérial de Paris． Memoires，t．6，11p．1－1－4．（Paris，1861．）
17\％．Le Verrier（U．J．）．Sur les masses des planites et la parallaxe du Solcil． Comptes Rrmilis，18i2，tome 75，pp．165－172．
1\％3．Lindenau（Bermhardo de）．Investigatio nova orbitac a Mer＂utio circa Solem descriptae．Acce－ dunt tabulae planetae ex elementis recens repertis et theoria gravitatis lllustr．de La Place con－ structae．Anctore Bernlardo de Lindenan，Go－ thae，1813．4to，plp．40＋xliv．
174．Lynn（W．T．）．On the mass of Jnpiter，as cleduced by Herr Krüger from tho oloservations of Themis． Montl．Not．， 1816 ，vol．2\％，pp．1－i．
175．Möller（Axel）．Bericht iiber dio Resnltate einer nenen berechnung dar Elemente des Fayeschen Cometrl．

Vierteljahrsselırift der Astronomselien（iesell－ schaft，1872，\％Jahrgang，plu．85－9\％．

176．Newcomb（Simon）．The Uramian and Nreptunitu systems，investigated with the elf－inch＂Inatorial of the United States Niaval Oleservatory．
Washington Observations， $1 \times \% 3$ ，Apprmix I， i4 111．
177．Newcomb（Simon）．Discussion and resulta of observations on transits of Mereury．from 167 a to $1 \times \times 1$ ．

Astronomical Papers prepared for the use of the Amer．Eplemeris and Nantical Almanac，rol．1， Pl．3：3－484．（Washington，18，2．j．4to．）
178．Nicolai（F．B．G．）．Die EJemente der Junobahn， ants nene berechuet，von IIrn．Professor Nicolai Direktor der sitemwarte in Mannheim unterm 11. Sept． 1823 eintresindt．

Astronomisches Jahrbuch，1826，pp．224－223． （Berlin，182：3．）
179．Peirce（Benj．）．［On the mass of N゙iptune from perturbations of Cranus．］ Ant．Nach．，1848，Bd．2\％，S． 205.
180．Powalky（C．）．Bestimunng der Sonnenparallaxe aus dem Verbiiltuiss der Erll－zur Sommenmasse． Ast．Nach．，1－72，Bd． 79, S．25－2－
181．Powalky（C．）．Die Elemente der Sonoenbalın und die Massen der Planeteu Vemus und Mars，ans Vergleichung der Reclunung nach Hansen－Olufsen＇s Sonuentafeln（Kopeuhagen 1853）mit den l3eobach－ tungen rou W．Struve und Preuss in Dorpat 1 eos： bis 1839 ． Ast．Nach．， $18 \% 6, \mathrm{Bd} .88$ ，S．27\％－2\％6．
182．Earl of Rosse．Observations of the satellites of the planet liranus，made at Birr Castle，during the jears $18 \% 2,1873$ ，and 1874.

Montli．Not． 1875 ，vol． 35 ，pp．300－304．
183．Rothman（R．W．）．Note on the masses of Veuns and Mercurs．

Month．Not．，1542，rol．5，pp．130－133；Mem． Roj．Ast．Soc．， 1842 ，vol．12，pl）．409－11：．
184．Rothman（R．W．）．Secoud note ou the mass of Venus．

Month．Not．，1842，vol．i，pl．1＝0－182：Men． Row．Ast．Soc．， $1 \div 4.2$ ，vol． $12, \mathrm{pp} .+13-41 \mathrm{i}$ ．
185．Safford（T．H．）．On the perturbations of l＇ranus and the Mass of Neptune． Month．Not．， $1 \sim 62$ ，vol．22，pp． $142-144$.
1ニ6．Schur（W．）．Bestimmmng der Masse des Jupiter aus Heliometer－Messungen der Abstinde seiner Satelliteu．

Vierteljahrsschrift der Astronomischen Gesell－ schaft．1－81， 16 Jahrsang，pu．292－20ti．
1s\％．Stone（E．J．）．A determination of the moon＇s mass． Month．Not．．186e，rol．2e，p．42．
187 $\frac{1}{2}$ ．Struve（Hermanu）．Beobachtungen der Saturis－ trabanten．Erste Abtheilung．Beobachtungen am 15－zïlligen Refractor． Supplément I anx Obserratious de Ponlkora． St．－Pítersbourg， 1822.133 by $10 \frac{1}{2}$ inches． 133111 ． 188．Struve（Otto）．Détermination de l＇orbite du satel－ lite de Neptume，et do la masie de la planete． Compte Reudu，1：47，t．25，pp．－1：3－：16．
189．Tisserand（F．）．Sur la determination de＇s massey de Merenre，de Vénus，de la Terre el de la paral－ laxe solaire．

Comptes Rendus， $1: 81$ ，t． $9 \cdot 2$ ，pp． $653-6 \mathrm{t}^{2} 0$ ．
190. Wurm (J. F.). Ueber die Masse des Urauus, nebst vergleichendeu Berechnuagen iiber die Masse, Dichtigkeit und Grosse der iibrigen Planeten und der Sonve.

Astronomisches Jahrbuch, 1792, 1p. 210-214. (Berlin, 1789.)
191. Wurm (J. F.). Versuch, die Masse der Venus ans Souneubeobachtungen zu bestimmen.
Astronomisches Jahrbuch, 1806, pp. 149-153. (Berlin, 1803.)
the solar p.irallat frou trigovometrical METHODS.
192. Airy (Sir Geo. B.). Report on the telescopic obserrations of the transit of Venus, 1874, made in the experlition of the British Government, aud on the couclusion derived from those obscrvations.

A Parliamentary Return, orlered by the House of Commous to be printed, 16 Jnly : 1877. $16 \mathrm{by} 8 \frac{1}{2}$ inches. 34 pp .
193. Airy (Sir Geo. B.). On the inferences for the value of mean solar prarallax aud other elements deducihe from the telescopic observatious of the transit of Venus, $1-74$, December 8 , which wero nade in the British expedition for the observation of that trausit.

Month. Not., 1877, rol. 38, pp. 11-16.
194. Airy (Sir Geo. B.). Account of observations of the transit of Venus, 1874, December 8 , matle under the authority of the British Government: and of the reduction of the observations. Edited by Sir Genrge Bildell Airr, K. C. 13., Astronomer Royal. Printed for Her Majesty's Stationery Office under the antbority of the Lords Commissioners of Her Majestr's Treasury. 18s1. 4to, pp. viij+inl2+21.
195. Bond (W. C.). Solar parallax deduced from right-ascension observations on Mars east anl west of the meridian, near the opposition of 1249-'50.

The Astronomical Jonroal, edited by Benj. Apthorp Gould (Albany, N. Y.), 185\%, vol. 5, 11. 53.
196. Cassini (J. D.). Les élémens de l'astronomie vérifiez par Monsieur Cassini par le rapport de ses tables aux observations de M. Richer faites en l'Isle de Cayenue.

Mémoires de l'Académie Royal des Sciences, 1666-1699, t. 8, pp. 55-117. (Paris, 1730, 4to.)
197. Cruls (L.). Sur la valeur de la parallaxe du soleil, déduite des observations des Missjons brésiliennes, a l'occasion du passage de Vénus sur le soleil, en 1882.

Comptes Rendus, 1887, t. 105, pp. 1235-1237.
19*. Downing (A. M. W.). A determination of the Suu's mean equatorial horizontal parallax from meridian decliuation observations of Mars and neighboring stars marle at the observatories of Leiden and Melbourne near the time of opposition, $1 \times 5 \%$.

Ast. Nach., 1879, Brl. 96, S. 119-128.
193. Du Séjour (Dionis). C'alcul des passages de Vénus sur le disque du soleil, les 6 juin 1761, et 3 juin 1769.

Traité analytique des mouremens apparens des corps éflestes; par M. Dionis Dn Séjour. T. 1, pı. 451-191. (Paris, 1786, 2 vols., 4 to.)
200. Eastman (J. R.). The solar parallax from meridian obserrations of Mars in 1877.
Washington Obseryations, 1877, Appendix III, 4to, 43 p p.
201. Encke (J. F.). Die Entfernung der Sonne ron der Erle, aus dem Venusilurchgange von 1761 liergeleitet, von J. F. Encke. Gotha, 1822. 1:ino, 159 pp .
202. Encke (J. F.). Der Venusdurehgang ron 1769, als Fortsetzung der Abhandlung iiber die Entfernung der Sonue von der Erde bearbeitet ron J. F. Encke. Gotha, 1824. 12mo, 112 pp .
203. Encke (J. F.). Über den Venusilurehgang ron 1769. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, 1835, Math. Klasse, pp. 295-309.
 minanda parallaxi Solis, ex observato transitu Veneris per Solem, tnm pro inueniendis Longitudinibns locorum super terra ex observationibus eclipsium Solis, vaa cum calculis et conclusiouibus inde dednetis.

Novi Commeutarii Academiae Scientiarrın Imperialis Petropolitanae, 1769, tom. 14, pars 2, pı. 321-554.
204. Faye (H. A. E. A.). Sur les passages de VÉnus et la parallaxe in soleil. Comptes Reudus, 1ン53, t. 68, pp. 42-49.
20․). Faye (H. A. E. A.). Examen eritique iles idées et desoluservations du P. Hell sur le passage de Vénus re 1769.

Comptes Rendus, $1=69$, t. 63, pp. 282-290.
206. Faye (H. A. E. A.). Sur la parallax du solcil. Comptes Rendus, 1881, (. 92, 1pp. 37̈ј-378.
20\%. Faye (H. A. E. A.). Réponse à fuelques critiques relatives à la note du 21 férrier sur la parallaxe du soleil.
Comptes Reudus, 1-81. t. 92, pp. 1071-1074.
208. Ferrer (Don José Joaquin de). On the determination of the parallax of the Sun from tho observations of the transit of Venus over bis disk, June 3,1769 . (A posthumous memoir.)
Mem. Roy. Ast. Soc., 1832, vol. 5, pp. 253-296.
209. Flamstead (John). [The solar parallax from ob)serrations of Mars.]

Phil. Trilus., 1672, p. 5118, and 1673, p. 6100.
210. Galle (J. G.). Ueber die Anwendung von Beobachtungen der kleinen Planeten zur Erinittelnng des Werthes sler Sonnen-Parallaxe, mit besouderer Riicksicht auf die diesjiilırige Opposition der Phocia. Ast. Nacb., 1872, Bd. 80, S. 1-10.
211. Galle (J. G.). Ueber den aus den Flora-Beobachtungen ron $18 \% 3$ sich ergehenden Werth der Son-nen-Parallaxe.
Ast. Nach., 1875. Bd. 85, S. 27-270; and 1875, Bd. 86, S. :-)-२.
212. Galle (J. G.). Lettre de M. Galle, directeur de l'Observatoire de Breslan, tonchant la détermination de la parallaxe solaire par les observations de la planète Flore.

Comptes Rendus, is̃5, t. 80, pp. 1154-1156.
613. Galle (J. G.). Ueber vino Bestimmung der SonnenParallaxo ans eorrespondirenden beobachtungon des Planeton Nora anf melneren Stern warten der nördliehen nut siddichen Hallkngel im October und November 1873. Von Dr. J. G. Gallo * * * 13reslan, 1875. 8vo, pp. iv+i2.
2l4. Gill (David). Accoment of atermination of the solar parallax from observations of Mars, made at Ascension in 1877.

Mem. Roy. Ast. Soc., 1880-81, vol. 46, 1p1. 1-172; Montl. Not., 1831, rol. 41, pp. 317-325.
215. Gill (David). Nute on some criticisms mate by Mr. Stone on the methods available for determining the solar parallax.
Montli. Not., 188:3, vol. 43, pp. 307-315.
221. Gilliss and Gould. The solar parallax, deduced from observations of the U. S. Naval Astronomical Experition, under Lieut. J. M. Gilliss, by B. A. Goille, jr.
Tho U. S. Naval Astronomical Expedition to the Southrru Hemisphere, duriug the years 1849 -'50 -'5l-'is. 33d Congress, lst session, House of Representatives, Ex. Doc. No. 121. Vol. 3, 1p. lixcelxxaviij. (Washington, 1856. Ato, plp. celexxviij +492 .)
21\%. Hall (Asaph). Solar parallax, deduced from observiations of Mars with equatorial instruments.
Washington Observations, 1863, Appendix A, pp. lx-lxiv.
218. Hall (Maxwell). Determination of tho solar parallax from tho opposition of Mars in 187%.

Mr'u. Roy. Ast. Soc., 1877-79, vol. 44, p]. 51-121.
219. Halley (Edmund). Some remarks upon the mothorl of olscrving the differences of right ascension and declination by eross hairs in a telescopo.

Phil. Trans., 1720, pp. 113-116.
220. Hanseu (P. A.). [Solar parallax derived from the Sun's mass.]

Abhancl. der mathem.-phȩs. Classo der König. Siichsischen Gosellschaft der Wissenschaften, 1864, 13d. 7, 1p. 270-272.
221. Hansen (P. A.). On the vialne of the solar parallax iledneed from the lunire tables. Month. Not., 1863, vol. 23, p. 242.
222. Hansen (P. A.). Calculation of the Sun's parallax from the lumar theory.

Month. Not., 1863, vol. 24, pp. 8-12.
223. Harkness (Wm .). On the relative accuracy of differont methods of determining the solar parallax.

Amer. Jour. of Science, 1851, vol. 22, pp. 375-394-
2\%.1. Henderson (T.). Letter from Mr. Henderson to Professor Airy, on tho Sun's parallax, as dednced from varions observations (of Mars) made at Greonwich, Cambrilge, and the Capo of Good Hope.

Mem. Roy. Ast. Soc., 1833, vol. 8, pp. 9.j-103.
225. Hornsby (Thomas). A discourse on the parallax of the Sun.

Pliil. Trans., 1763, pp. 467-495.
226. Hornsby (Thomas). The quantity of the Sun's parallax, as deduced from the observations of the transit of Venus, on Juno 3, 1769.

Plal. Trans., 1751, pp. 574-579.
2.2\%. La Lande (J. J. le François de). Mómoire sur l.ı parallaxo da soloil, dednitodes observations fatites dans la mev dit Sind, dans lo royamo d'Astracan. et il la Clime.
Histoire olol'Acalémie Rovalo desticiences, $15 \% 1$. Memoires, lיP. 776-798. (F'aris, 1:i.i, 4to.)
2:Z. Le Verrier (U. J.). [Solar parallax fom the parallactic inequality of the arth's motion.]

Annales des l'Onservatoir [mprrial do Paris, Mémoires, t. 4, pr.100. (Paris, 18.j\%.)
2:3. Le Verrier (U. J.). On the masses of the plandets aud the pirallax of the Sun.
Monih. Not., 1872, vol. 3: 11. 32:-323. (This is a translation of a paper in the Comptes liendus, 157: t. 75, pp. 16.5-17\%.)
229) $\frac{1}{2}$. Lexell (And. Joh.). Disquisitio de investiganda parallaxi Solis, ex transitr Venoris per Solem anno 1769.

Novi Commentarii Academiae Sirntiarmm Imperialis Petropolitaman, 177:, tom. 17, 11. 609-67:3.
230. Lord Lindsay and Dr. David Gill. Determination of the solar parallax by observations of the minor planet Juno at opposition in 1874.

Dun Eeht Observatory Publicatious, 187\%, vol. :) 1 . 211.
231. Littrow (Carl Ludwig). P. Hell's Reise nach Wardoe bei Lappland und seine lBeobachtung des Veuns-Durchganges in Jahre 1\%69. Aus den anfgofunden․n Tagebiicheru geschöpft und mit Erliiuterumgrn begleitet von Carl Ludwig Littrow * * Wien, 1835. 12mo, pl. xvj+166.
$23:$. Newcomb (Simon). Investigation of the tlistauce of the sun and of the elements which depend upon it.
Washingtou Observations, $186 \overline{6}$, Appeulia II. 4 to, 29 pp .
233. Newcomb (Simon). Remarks on Mr. Stono's rodiscussion of the transit of Venus, 1769 . Month. Not., 1と68, vol. 29, pp. 6-\%.
:34. Newcomb (Simon). On Hell's alleged falsitication of his observations of the transit of Venus in 1769.

Mouth. Not., 1583, vol. 43, pl. 371-381.
$234 \frac{7}{2}$. Newcomb (Simon). Discussion of observations of the trasit of Venns in 1761 and 1769.
Astronomical papers prepared for the nse of the American Ephemeris aud Nantical Almanac, vol. 2, 1יP. 259-405. (Washington, 1890, 4to.)
235. Obrecht (A.). Discussiou des résultats obtenus avec les épreures daguerriemnes de la Commission frauçaise du passage de Vénus tle 1874.
Comptes Rendus, 185:, t. 100, pp. 227-230.
236. Obrecht (A.). Sur la parallaxe solaire déduite des epreuvesdaguerrienues de la Commıssion française du passarge de Vénus de isit: noureau mode do discnssion, comprenant la presque totalite des observations.
Comptes Rendus, 1855, t. 100, pp. 341-343.
237. Obrecht (A.). [Definitive value of solar parallas from the Frencli dagnerreotyles of the transit of Vouns in 1874.]
Comptes Reudus,.1885, t. 100, p. 1121.

³3．Pingré（Alexandre Guy）．Ohservations astrono－ mípues purer la détermination de la parallase du soleil，f：tites en l＂Isle Rodrigue．

Histoi rurle l＇Acarlémie Ropale ales Sciences， 1761. Мémoires，11י．413－436．（Paris，1763，4to．）
2：30．Pingré（A．G．）．Nonvelle recherche sur la détermi－ nation de la parallaxe du soleil par le passage de Véuns du 6 juin 1 f61．

Histoire de l＇Académie Royale des Scieuces， $176{ }^{\circ} 5$. Mémoires，pp．1－34．（Paris，176z，4to．）
240．Pingré（A．G．）．Mémoire sur la parallaxe flu soleil， déluite des meilleurs ohserv：ations de la duréo du passage alo Vénus sur son dispucle 3 juin 1769.

Histoire de l＇Académie Royale de＇s Sciences，177：． Mémoires，pp．39z－420．（Paris，liテi），4to．）
$\because 41$ ．Plana（Jean）．Surla paraliaxe dusoleil et la masse de la terre，déduites tu coefficient de l’iuégalité prarallactique de la lune．

Théorio du mouvement de la lnme，par Jean Plana＊＊＊T．3，pц．13－16．（Turin，1832．）
$2 \mathfrak{2}$ Planman（Andrea）．Parallaxis Solis ex obserr－ ationibus novissimi transitus Veneris per dis． cum Solarem，peculiari quadam methodo investi－ gata．

Plil．Traus．，17（i8，リノ．109－127．
24．3．Pound（Rev．James）．Nupere observationes astro． nomicio cum Regia Societate commnuicatic．

Phil．Traus．，171．1，1p．1109－1114．
24．Powallsy（C．）．Discussion nourelle du passage de Vénus do 1769，en vue de la détermination de la parallaxe solaire．

Conuaissauce des Temps，186\％．Alditions，111． 3－27．
245．Powalky（C．）．Beitriage zu einer vollständigeren Beurtheilung der Vennsdurchgiinge und Ermit－ telung einiger genanerer Resultate ans rlensellien．

Ast．Nith．， $1 \times 70, \mathrm{Bd} .76, \mathrm{~S}$ ．I6l－192；and 1e71， Bd． $77, \mathrm{~S} .271-2 \% 2$.
2tit．Powalky（C．）．Ueber die verschiedenen Mefbo－ den zur Bestimmung der Sommenarallaxe und die in nenerer Zeit nach deuselhen gefnndeven Kesnl－ tate．

Ast．Nach．， $187 \cdot 2, \mathrm{Bll} .=0, \mathrm{~S} .97-112$.
247．Puiseux（V．A．）．Sur les observations de coutact faites peudant le passage de Vénus du $\}$ décembre 1874.

Comptes Remilns．1二～1，t．92，1p．481－48E．
2f．Puiseux（V．A．）．Sur les mesures micrométriques pffeetuées pendaut le passage de Vénus du $\begin{aligned} & \text { dé．}\end{aligned}$ combre 1874.

Comptes Remilus， 1381, t． $92, ~ 1 י 1.80<-813$.
249．Short（James）．The observations of the internal contact of Venns with the Sm＇s limb，in the late transit，mate in ilifferent places in Enrope，com－ pared with the time of the same contact observel at the Cape of Goorl IIope，and the parallax of the Sin from thence determined．

Phil．Trins．，1762，plo．611－62＊．
250 ．Short（James）．Second paper concruiner the par－ allax of the Sun determined from the olservations of the transit of Veuns，in which this subject is treated of more at length，and the quantity of the parallax more fully ascertained．

PLil．Traus．， $1 \boldsymbol{\tau 6 3}$ ，pl．300－34\％．

251．Stokes，Adams，Christie，Hind，Richards，Stone， Dove．Report of the committeo appointed ly the British Govermment to superintend the ar－ raugements to be made for the sendmg of experli－ tions at the Govermment expense，and securing coöperatiou with the Goverument expeditions for the observation of the transit of Venus， 183° ，De－ cember 6 ．

A Parliameutary Returu，June，1887． 16 by $8 \frac{1}{3}$ inches． 88 pp ．
2．\％．Stone（E．J．）．A determination of tho Sun＇s mean equatorial horizoutal parallax，from declination ob－ servations of Mars and stars，made during the op－ position of $1=6:$ ，at the Royal Ohservatory，Green－ wieh；the Rosal Ouservatory，Cape of Good Hope； and the Government Observatory，Williamstown， Victoria．

Mem．Roy．Ast．Soc．，1－63－64，vol．33，pp．77－102．
253．Stone（E．J．）．Note on the calculation of the Su＇s parallax from the lunar theory ly P．A．Hansen． Month Not．，1867，vol．27，pp．239－240．
254．Stone（E．J．）Determination of a slightly corrected value of the solar parallas from the data of Le Verrier＇s solar tables． Mouth．Not．，1867，vol．2\％，pp．241－242．
255．Stone（E．J．）．Some remarks on the value of the solar parallax，as deduced from the parallactic in－ equality in the earth＇s motion．

Month．Not．，1867，vol．23，pp．21－2．\％．
256．Stone，（E．J．）．A rediscussion of the observations of the trausit of Venus， 1769.
Mouth．Not．，1863，vol．23，pp．25．5－266．
257．Stone（E．J．）．A reply to Mr．Newcomb＇s rewarks on＂Mr．Stone＇s rediscussion of the trausit of Venns，1769．＂
Month．Not．，186\％，vol．29，pp．8－11．
258．Stone（E．J．）．On some points connected with the rediscussion of the observations of the transit of Tenus， 1569.
Montb．Not．．1809，vol．29，pp．236－249．
259．Stone（E．J．）．On some effects of the comparative clinging of the limb of Venus to that of the Sun in the transit of LDil，as comprared with that of $1 \geq 8 \%$ ．
Month．Not．，1869，vol．29，pp．250－252．
260．Stone（E．J．）．On some phenomena of the internal contacts common to the trausits of Venus，oliserved in 1769 and 1874 ，anl some remarks thereon．
Month．Not．， 15%（；vol．37，pp．45－jin．
26I．Stone（E．J．）．On the telescopic observations of the transit of Venus 1874，ami on the conchnsions to he deduced from these olsservitions．
Month．Not．，1878，vol．3s，1p．279－295．
262．Stone（E．J．）．A comparisou of the observations of contact of Venus with the Sun＇s limb in the transit of 1874，December 8 ，made at the Royal Ohserva－ tory，Cape of Good Hope，witb the corresponding observations made at the stations in the Parlia－ mentary Report，and a discussion of the results． Month．Not．，l87E，Vol．33，pl．341－347．
263．Stone（E．J．）．Note oll the Jurations observed by the Frenchobservers at the transit of Venns， 1874. Ionth．Not．，1831，vol．41，11）．3：5－329．
261. Stone (E. J.). On seme results obtained from tho meridian observations of Mars at the oppesition of 187%.

Montl. Not., 1882, vol. 42, pl. 290-301.
(fis). Taylor (Thomas Glanville). [Solar parallax from declinations of Mars observed at Madras and the Cape of Good Ilopeduring the years 183\% and 183.1.] Result of Astronomieal Observations made at tho Hon. E. I. Company's Observatory, Madras. Vol.3. For the jears 1834 and 1835 , 1. 71. (Marlas, 1s36.)
Effit. Todd (David P.). The solar parallax as iloriverl from the American photographs of the transit of Venus, 1-74, December $8-9$.

American Jourual of Seience, 1881, vol. 21, pr. 491-493.
267. Tupman (Capt. G. L.). On the mean solar parallax as derived from the olservations of the transit of Venns, 18 fi. Month. Not., 18is, vol. 38, pp. 429-457.
$20 \sim$. Tupman (Capt. G. L.). On the photographs of the transit of Venus.

Month. Not., 1878 , vol. 38, pp. 503-513.
269. Wimecke(A.). [The solar parallax from meridian observatious of Mars duriug the opposition of 1862.] Ast. Nach., $186: 3$ Bd. 59, S. 261-264.

DENSITY OF THE EARTH.

270. Airy (Sir Geo. B.). Aeconut of pendulum experinents mndertakeu in the Harton Colliery, for the purpose of determining the mean density of the earth. Phil. Trans., 1856, pp. 297-355.
271. Baily (Fraucis). An account of some experiments with the torsion-rod, for determining the mean reusity of the earth.

Mrin. Roy. Ast. Soc., 1842, vol. 14. 1to, pl. $120+$ +cxlviij.
27:. Bianco (Ottavio Zanotti). Il problema meceauico della firnra drlis terra, esposto secondo i migliori antori, da Orfavio Zanotti-Biauco * * * Parte primo. Firenze-Torino-Roma: 18E0. pp. siv+302. Parte secouda, libro primo, $1885, \mathrm{pp}$. viij $+185^{\circ}$. 8vo.
973. Callandreau(O.). Sur la theorie de la figure des planctes.

Conptes Rendus, 1884, t. 99, ןp. 1060-1061.
2i4. Callandreau (O.). Sur la constitution intérionre do la terre. Comptes Rumlns, 1885, t. 100, pp. :3i-40.
$2 \% 5$. Callandreau (O.). Addition ì leux notes préédentes, foncrinint la theorio do la figure des planutos el dela terre.

Comptes liculns, 1*25, t. 100, lup. 163-164.
2\%6. Callandreau (O.). Sur la thérie de la fignre de la terre.

Comptras Remdus, 188.
2:77. Callandrean (O.). Remarques sur la theorie de la figure do la terre.
Bulletin Astronowique (Paris), 1830, t. 5, pl. $.173-180$.
$27 \cdots$. Callandreau (O.). Remarques sur la theorie de la figure do la terre.

Bnlletin Astronomique, 138 !, t. 6, 1יp. 185-192.
279. Carlini (Francesco). Osservazion clella lunghezan del pendolos semplice fatte all' allezza dimille tese sul livello del mare.

Ethemotidi Astronomichudi Milanm. 1~2は. Apr pendier. 1ph. こy-to.
280. Cavendish (Henry). Experiments (1) determine the density of the earth. Pbil. 'Tranч., 1798, I1]. 169-526.
221. Clairant (A. C.). Theorie de la tignre de la terre, tirée des prineipes de I'hydrostatigne. Par M. Clairant. * " Paris, 1743. 12mo, Ill. xI+310.
¿S\%. Clarke (Capt. A. R.). On the dellection of the plumb-line at Arthurs Seat, ant the mean specifie gravity of the earth.

28:3. Cornu (A.) et Baille (J. B.). Détormination nonvelle do la constante do l'attraction it de la densite movenmo de la terve.

Comptes Rendus, 1873 , t. 76 , p $1 ;$. $4-95 *$.
284. Cormu (A.) At Baille (J. B.). Sur la mesare de la deusité moyenne de la terre.

Comptes Rendus, 1=78, t. d6, pp. 699-702.
285. Darwin (Geo. H.). On an oversight in the Mecanifue Celeste, aud on the internal densities of the planets.

Mouth. Not., 187(6, rol. 37, pp. 7T-s9).
2é6. Darwin (G. H.). On the figure of equilibrinm of a planet ot heterogeurons density. Proc. Roy. Soc., 1883, vol. 36, pp. 158-166.
2ZZ $\frac{1}{2}$. Fisher (Rev. Osmond). Physies of the eartl'y erust. By the Rev. Osmond Fisher. * * * Sccond edition, altered and enlarged. London, $1=89$. 8ro, pp. xvil+391.
28\%. Giulio (Charles Ignace). [Note] sur la détermivation de la deusité mosenne de la terre déluite de l'observation du peudule faite à l'Hospico du Mont Cenis par Mr. Carlini ev septembre 1821.

Meurorie della Reale Accademia delle Seienze di Torino, 1840 , serie 2 , tomo 2 . Scienze fisiche o mathematiche, pp. 379-384.
28it. Hansen (P. A.). [1)ic ummerische Bestimmung der Triigheitsmomente der Erde.] Ast. Nach., 1842, Bil. 19, S. 197-198.
2se. Haughtoll (Rev. Samuel). On the density of the earth, deduced from the experiments of the Astronomer Royal, in Harton coal-pit.

2s \%. Hill (G. W.). On the interior constitution of the earth as respects deusity.

Annals of Mathematies, edited by Prof. Ormond Stonn, University of Virginia, 1882, vol. 4, pp. 19-2!).
290. Hutton (Chas.). An aceonnt of tho caleulations made from the survey aud measures taken at Schehallien, in order to ascertain the mean deusity of the earth.

Phil. Trans., 1778 , pp. 689-78=.
:91. Hutton (Chas.). The mean density of the eartb. Beiug an account of the calculations made from the survey and measures taken at Monut Shichallin, in order to ascertain the mean deusity of the earth. Improved from the Philosophical Transactions, vol. 68, for the year 1778 .
291. Hutton (Chas.) - Continued.

Tracts on mathematical and philosophical subjects. " " By Chas. Hutton, Ll. 1). aud F. R. 5., etc. Vol. 2, tract 26, 112. 1-63. London, 1812, $12 \mathrm{mo}, 324 \mu \mathrm{p}$.
202. Hutton (Charles). On the mean density of the earth.

Phil. Trans., 1821, p1. 276-292.
293. Jolly (Ph. von). Die Auwendung der Wialge auf l'robleme der Gravitation. Zweite Ahhamdlung.
Abhandlungen der Mathematisch-Plỵnkaliscluen Classe der K̈̈ui,rlich Bayerischen Akademie der Wissenschaften, 1883 , Bul. 14, 2te Abtheilung, Pp. 1-26.
294. Le Gendre (A. M.). Suito des recherches sur la figure des planères.

Histoire de l'Acadénie des Sciences (Paris), 1789. pp. 372-454.
29.). Lévy (Maurice). Sur la théorie do la figure de la terre.
Comptes Rendus, $1=88$, t. 106, pp. 1270-12\%6, 1314-1310, atul 13:5-1381.
296. Lipschitz (R.). Versuch zur Herleitung eines Gesetzes, das die Dichtigkeir fiir die Schichten im Inneru der Erde anniihernd darstellt, aus den gegebenen Beobachtungen.

Journal fïr die reine und angewandte Mathomatik (Borcharit. Berlin), 18i:3, 13d. 6:, pp. 1-35.
297. Lipschitz (R.). Beitrag zur Theorie des Gleichgewichts eines wieht howogenen flussigen rotirenden Sphäroids.

Journal fiir die reine und angewandte Mathematik (Borchardt, Berlin), 186:3, Bd. 63, pp. $2=29-295$.
298. Maskelyne (Rev. Nevil). An acconnt of observiations manle on the monntain Schehallion for finding its attraction. Phal. Trans., 1775, 11]. 500-54?.
299. Mendenhall (T. C.). Determination of the acceleration due to tho force of gravits, at Tokio, Japin.

Amer. Jour. of Science, 1880, vol. 20, plp. 124-13:3.
300. Mendenhall (T. C.). On a letermination of the force of grarity at the smmmit of Fujiyama, Japan.

Amer. Jour. of Sience, 1-81, vol. 21, pp. 99-103.
301. Plana (Jeau). Note sur la deusité moyenuc de l'écorce superficielle de l't terre.
Ast. Nach., 1852, Bd. :15, S. 17T-191.
302. Playfair (John). Acconnt of a lithological survey of Schehallien, made in order to determine the specific gravity of the rocks which compose that mountain.

Plit. Trans., 1811, pp. 347-377.
303. Poincaré (H.). Sur la figure de la terre. (On the relation between interior deusity, flattoning, Clairaut's equation, aul precession.)

Comptes Rendns, 1888, t. 107, pp. 67-71.
304. Poincaré (H.). Sur la figure de la terre.

Bulletin Astrounmique, (Paris) 1839, t. 6, pp. 5-11, and 49-60.
305. Poynting (J. H.). Ou a method of using the balance with great delicacy, and on its employment to determine the mean density of the earth. (1 plate.)

Proc. Roy. Soc., $1875-3$, vol. 23, pp. 2-35.
306. Radau(R.). Sur la lol des densités à l'iutérieur de la terre.

Comptes Rendus, 1835, t. 100, pp. 97:-974.
307. Radau(R.). Remartues sur la theorio de la figuro de la terre.

Bulletin Astronomique, 1335, t. 2, pp. 157-161.
308. R[adau] (R.). Revue dcs-Sterneck (R.)-Untersuchungen iiluer die Schwere in Imern der Erde. Bulletin Astronomique (Paris), 183\%, t. 4, pp. 2.34-237.
309. Reich (F.). Versuche iiber die mittlore Dichtigkeit der Erde, mittelst der Drehwage von F. Reich, Prof. der Physik au der K. S. Bergakademie. Mit \geq lithographirten Tateln. Freiberw, 1838. 12mo, 66 pp. [I have never seen this work, but on accomint of its historical importance I quote the title from 271, p. 9.-w. H.]
310. Reich (F.). Neue Versuche mut der Drehwage zur Bestimmung der mittleren Dichtigkeit der Erde.

Ahhaudhugen der mathematisch-physischeu Classe der Königlich Saichsischen Gesellschaft der Wissenschaften zu Leipzigr, I\&52, Bd. 1, pp. 3マ3-430.
311. Roche (Édonard). Ménoire sur l'état intérieur du globe terrestre. Par M. Elonard Poche * * Paris, 1e81. 4to, 48 pp . (Extrait des Mémoires de l'Académie dees Sciences et Lettres de Montpellier. Seetion d.s Sciences, tome 10.)
312. Roche (Ėdouard). Note sur la loi do la densité à Yiutérieur de la terre. Comptes Rendus, 1e54, t. 39, pp. 121:-1217.
312\%. Schell (Anton). Ueber die lBestimmung der mittleren Dichtirkeit der Erde, von Anton Schell, Professor am Baltischen Polytechnicum zu Riga. Mit Irei lithographirten Tafeln. Goertingeu, 1 E69. 4 to, 39 pp .
313. Sterneck (Robert von). Untersuchungen iiber die Schwere im Innern der Erde.

Mittheilungen les kaiserl. könirl. Militär-Geographischen Institutes (Wien), 1**), Bl. \&, lpp. 77-120.
314. Sterneck (Robert von). Wiederholung der Untersnchungen uber die Schwere in Innern der Erde.

Mittheilungen des kaiserl. köniğl. Militär-Geographischen Institutes (Wien), 18ะ3, Bd. 3, pp. 59-94.
315. Sterneck (Robert von). Untersuchungen iibrer die Schwere anf der Erde.

Mittheilungen des kaiserl. königr. Militär-Geographischen Institutes (Wien), $1 \geq 84, \mathrm{Bd} .4, \mathrm{pp} .89-$ 155.
316. Stieltjes. Note sur la lensité de la terre.

Bulletin Astronomique (Paris), 1884, t. 1, pp). 465-46\%.
317. Tisserand (F.). Quelques remarques au sujet do la thério de la figure des planètes.

Comptes Reudus, 1884, t. 99 , pp. 399-403 and 518.
318. Tisserand (F.). Sur la théorie de la figure de Ia terre.

Comptes Rendus, 1884, t. 99, pp. 57\%-583.
319. Tisserand (F). Quelques remarques all sujet de la théorie de la figure des planètes.

Bulletin Astronomique (Paris), 1884, t. 1, pp. 417-120.

320．Tisserand（ \mathbf{F} ．）．Sur la constitution intérienro do la terre．

Bulletin Astronomique（Paris），1884，t．1，pp． 521－527．
321．Todhunter（I．）．A history of the mathematical theories of attraction，and the fignre of the carth， fiom the time of Newton to that of Laplace．By I．Todhunter＊＊＊London，1873．2 vols．，8vo． Vol．1，pp．xxxvj＋476；vol．2，pp． 508.
322．Wilsing（J．）．Bestimmung der mittleren 1）ichtig－ keit der Erde mit Ifiilfo cines Pendolapparates．

Publicationen des Astrophysikalischen Ohsor－ vatoriums zu Potsdam，Brl．6，S．31－128（1887，Nr． 2：）；2te Abhandlung，13d．6，S．129－192（1889， Nr．23）．

THE TIDES．

323．Airy（Sir Geo．B．）．Tidcs and waves．
Encyclopaedia Metropolitanis．2nd Division， Mixed Scicaces，vol． 3 pp．241＊－396＊．（London， 1842． 4 to．）
324．Airy（Sir Geo．B．）．On the laws of the tides on the coasts of Ireland，as inferred from an exten－ sivo series of observations made in conncction with the Ordnance Survoy of Ireland．
Phil．Trans．，1845，pp．1－124．
325．Airy（Sir Geo．B．）．On a controverted point in Laplace＇s theory of tine tides．

L．，E．d D．Phil．Mag．，1875，vol． 50, pp．277－279．
326．Airy（Sir Geo．B．）．On the tides at Malta．
Phil．Trans．，1878，pp．123－138．
32\％．Baird（Maj．A．W．）and Darwin（G．H．）．Results of the harmonic analysis of tidal observations． Proc．Roy．Soc．，1885，vol．39，pp．135－207．
323．Baird（Maj．A．W．）．A mannal for tidal observa－ tions，and their reduction by the method of har－ monic analysis；with an appendix containing anxiliary tables to facilitate the computations． By Major A．W．Baird，R．E．，F．R．S．，＊＊＊ London，1886．8vo，plp．vi $+5 \frac{1}{4}+x l$ ．
329．Challis（Jas．）．On the mathomatical principles of Laplace＇s theory of the tides． L．．E．d D．Plill．Mag．，1875，vol．50，pp．544－548．
330．Darwin（G．H．）．Tides．
Encyclopadia Britannica（niuth edition，Eulin－ burglı，1888），vol．23，1p．353－381．
$330 \frac{1}{3}$ ．Darwin（G．H．）．Second series of results of the harmonic analysis of tidal observations． Iroc．Roy．Soc．，1889，vol．45，pp．556－611．
330 ？．Darwin（G．H．）．On the harmonic analysis of tidal observations of high and low water． Proc．Ros．Soc．，1890，vol．48，11］．278－340．
331．Darwin and Turner．On the correction to the equilibrium theory of tides．I．By Prof．G．H． Darwin．II．By Mr．II．H．Turner． Proc．Roy．Soc．，1856，vol．40，1p．303－315．
332．Evans（Captain F．J．O．）and Thomson（Sir Wm．）． On the tides of the southern hemisphere and of the Mediterrancan．
Report of the 48th mecting of the British Asso－ ciation for the Advancement of Science， 1878 ，pl． 477－481．
333．Ferrel（Win．）．The problem of the tides，with re－ grard to oscillations of tho second kind．

The Astronomical Journal（Cambridge，Mass．）， 1856，vol．4，pp．173－176．

334．Ferrel（Wm．）．Discussion of tiden in Boston liarbor．

Report of the Superintendent of the U．S．Coast Survey，lafg．Appendix 5，ग口．万1－102．
335．Ferrel（Wm．）．On the moon＇s mass as derlnced from a discussion of the tides of lioston hamor．
Report of tho Superintendent of the IJ．S．Coast Survey，1sio．Appondix： 0 ， 1 ， $190-199$.
336\％．Ferrel（Wm．）．Tidal researches．An appeudix to the U．S．Coast Survey Report for 18za，but printed separately．J：0，pl．xiii＋262．
337 ．Ferrel（Win．）．On a controverted point in las－ place＇s theory of tho tides．

L．，E．d D．Phil．Mag．，1876，vol．1，Pu．IK： 187.

338．Ferrel（Wm．）．Discussion of tides in l＇enobsent Bay，Maine．
Report of the Snperintendent of the U．S．Coast and Geodetic Survey，1878．Appendix 11，pp． 268－304．
339．Ferrel（Wm．）．Discussion of the tides of the l＇a－ cific coast of the United States．

Report of the Superintendent of the U．S．Coast and Geoletic Survey，1882．Appendix 17，1p． 437－450．
340．Ferrel（ $\mathbf{W m}$ ．）．Report on the harmonic analysis of the tides at Sandy Hook．

Report of the Superintendent of the U．S．Coast and Geodetic Survey，1883．Appendix 9，pp．247－ 251.

341．Ferrel（Wm．）．Description of a maxina and mini－ ma tide－predicting machinc．（5 plates．）
Report of the Suporintendent of the U．S．Coast and Geodetic Survey，1883．Appendix No．10，1p． 253－27：。
342．Ferrel（Wm．）．Laplace＇s solution of the tidal equations．

The Astronomical Journal（Boston，Mass．），188．， vol．9，pp．41－44；and 1890，vol．10，pp．121－123．
343．Finlayson（H．P．\therefore ．On the mass of the moon as deduced from tho mean raugo of spring and neap tides at Dover during the years 1861，1864，1865， and 1866.

Month．Not．，1867，vol．27，p． 271.
344．Haughtou（Rev．Samuel）．Discussion of tidal obscrvations made by direction of the Royal Irish Academy in 1850－51．

Transactions of the Royal Irish Academy，1854， vol．23，Part II，pp．35－140．
345．Haughton（Rev．Dr．Samnel）．On the tides of the Arctic seas．Parts i to vin．

Phil．Trans．，1863，1p．243－272；1866，117．639－ 655 ；1875，pp．317－360；and 1878，112．1－16．
346．Haughton（Rev．Dr．Samuel）．On the semi－ diurnal tides of the coasts of Iretand，deduced from the Academy observations．Parts I to Xr．

Transactions of the Royal Irisb Academr（Dub－ lin）， 1871 ，vol． 24 ，Science，pp．195－211，and $253-$ 350.

347．Honzeau（J．C．）and Lancaster（A．）．［Bibliog－ raplıy of tides．］（Théorie des marées．La marée et la rotation du globe．）

Bibliographie génerale do l＇astronomie，t．2， cols．626－636 and 1626．（Bruxelles，1882，4to．）
348. La Place (P.S. de). Mémoiro sur le flux et le re-- flux de la mer.

Mémoires de l'Académie Royale des Sciences de l'Institut de France, 1818, t. 3, 1'1. 1-90.
349. La Place (P. S. de). [Mass of the moon from observatious of the tides at Brest.]

Traité de Mécanique Céleste, t. 5, livre 13, ch:p. 3, see. 10.
350. Lubbock (Sir John Wm.). On the tides in the port of Londion.
Phil. Trans., 1831, pp. 379-415; 1832, p1. 595-599.
351. Lubbock (Sir Johul Wm.). On the tides [at Brest and London 7.

Phil. Trans., 1832, pp. 51-55.
352. Lubbock (Sir Johu Wm.). Note on the tides [at Brest, Plymouth, Portsmonth, Sbeerness, London Docks, and St. Heleua]. Phil. Trans., 1833, pp. 19-22.
353. Thomson (Sir Wm.), Roberts (Edward) and Darwin (G. H.). Reports of the committees appointed (by the British Association) for the purpose of promoting the exteusion, improvement, and harmonic analysis of tidal olservations.

Reports of the meetings of the British Association for tho Advancement of Science, 1868, pp. 489-510; 1870, PL. 120-151; 1ع71, 1p. 201-20 ; 1872, pp. 355-395; 1876, pp. 275-307; 1883, pp. 49$117 ; 1884$, P1. $33-35 ; 1885$, pp. $35-60 ; 1886$, pp. 40-58.
354. Thomson (Sir Wm.). On an alleged error in Laplace's theory of the tides.
L., E. \& D. Phil. Mag., l875, vol. 50, 111. 2:27-242.
355. Thomson (Sir Wm.). Note on the "oscillations of the first species" in Laplace's theory of the tides. L., E. \& D. Phil. Mag., 1875, vol. 30, pp. 279-284.
356. Thomson (Sir Wm.). Gcneral integration of Laplace's differential equation of the tides. L., E. \& D. Phil. Mag., 1875, vol. 50, Pl'. 388-102.
357. Thomson (Sir Wm.). The tide gauge, tidal harmonic analyser, and tide predicter.

Minutes of Proccedings of the Institution of Civil Engineers (London), 1881, vol. 65, 1p. 2-25. Discussiou, pp. 26-72. (16 figures.)
358. Whewell (Rev. Wm.). Researches on the tides. Series 1 to 14.

Phil. Trans., 1833, pp. 147-236; 1834, pl. 15-45; 1835, рр. 83-90; 1836, рр. 1-15, 131-147, 289-341; 1837, pp. 75-85, 2.27-244; 1838, pp. 231-247; 1839, pp. 151-161, 163-166; 1840, 11). 161-174, 2555-272; 1848, pp. 1-29; 1850, pp. 227-233.

THE ELECTRIO CONSTANT, v.
359. Kohlrausch (R.) und Weber (W.). Elektrodynamische Maassbestimmungen insbesoudere Zuriickfiihrung der Strominteusitüts - Messungen auf mechanisches Maass.
Abhandlungen der Königrlich Sächsischeu Gesellschaft der Wissenschaften (Leipzig), 1857, Bd. 5, pp. 219-292.
360. King (Wm. F.). Description of Sir Wm. Thomson's experiments made for the determination of r, the number of electrostatic units in the electromaguetic unit.

Report of the 39 th meeting of the British Association for the Advancement of Science, 1869, pp. 434-436. Also, pr. 186-188 of Reports of the Committee on Electrical Standards appointed by the British Association for the Advancement of Science. Reprinted by permission of the Council. Londou: 1873, 8ro, 248 pp .
361. Maxwell (J. Clerk). On a method of making a direct couparison of electrostatic witlı electromagnetic force; with a note on the electromagnetic theory of light.

Phil. Trans., 1868, pp. 643-657.
362. M'Kichan (Dugald). Determination of the number of electrostatic mits in the electromagnetic unit, made in the Physical Laboratory of Glasgew University.

Phil. Trans., 187:3, pp. 409-427.
363. Ayrton (W. E.) and Perry (John.) A new determ:wation of the ratio of the electro-magnetic to the electro-static unit of electric quantity.

Journal of the Society of Telegraph Eugineers (London), 1879, vol. 8, pp. 126-141. Also, L., E. \& D. Phil. Mag., 1879, vol. 7, pp. 27\%-289.
364. Hockin (C.), Note on the capacity of a certain condenser, and on the value of v.
Report of the 49 th meeting of the British Association for the Advancement of Science, 1879, pp. 285-290.
365. Shida (R.). On the number of electrostatic units in the electromaguetic unit.
L., E. \& D. Phil. Mag., $1 \subset 80$, vol. 10, pp. $431-$ 436.
366. Stoletow (A.). Sur une méthodo pour déterminer le rapport des muités électromagnétiques et électrostatiçuos (lo v do Maxwell). (3 figures.)

Journal de Physique (Paris), 1881, vol. 10, pl'. 468-474.
367. Exner (Franz). Bestimmung des Verhältnisses zwischeu elektrostatischer und elektromagnetischer absoluter Einheit.

Sitzungsberichte der Mathematisch-Naturwisseuschaftlichen Classe der kaiserlichen Akademie der Wissenschaften (Wien), 1882, 86. bd., II. Abtheilung, pp. 100-114.
368. Thomson (J. J.). On the determiuation of the number of electrostatic units in the electromagnetic unit of electricits. Phil., Traus. 1883, pn. 707-722.
369. Klemenčič (Ignaz). Untersuchungen iiber das Verhiiltniss zwischen dem elektrostatischon und elektromagnetischen Maass-System. I.

Sitzuugsberichte der Mathematisch-Naturwissenschaftlichen classe der kaiserlichen Akademie der Wissenschaften (Wien), 1884, 89. bd., II. Abtheilung, pp. 298-328.
370. Himstedt (F.). Ueber dio Bestimmung Iler Capacitiat cines Schutzring-Condeusators in ahsolutem, electro-maguetischem Maasso.

Annalen der Phssik und Chemic * * * von G. Wiedemann, Leıpzig, 1838, 1Bd. 35, p1. 12G-136. 3i1. Rowland (Henry A.). On tho ratio of the clectrostatic to the electromagnetic unit of electricity.
L., E. © D. Phil. Mag., 1839, vol. 23, 1p. 301-31\%.

Also, Amer. Jour, of Science, 1839, vol. 38, pp. 259-293.
372. Rosa (Edward B.). Detormination of r, the ratio of the rlectromacretic to the electrostatic mit.
L., E. © D. Phil. Mag., 1-30, vol. U-, pl. 315-3.!2. Also, Amcr. Jour. of Scicuer, 1839, vol. 2n, p1. 293-312.
373. Thomson (J. J.) and Searle (G. F. C.). A ictormiuation of " r," the ratio of the electromannetic unit of electricity to the electrostatic mit.

Proc. Roy. Soc., 1890, vol. 47, Pp. $376-378$

I N D E X.

Page.	go.
Aberration, constant of 25	Centrifugal force at the surface of the Earth ... 56
adjusted value of the constant of.73, 103, 111, 133, 142	Citation of authorities, mode of................. 1,116
no satisfactory theory of. 144	Clairaut, A. C.................................. 9, 9, 94,97
Adjusted quantities, constants necessary for finding ... 127	Clarke, Geu. Λ. R............3, 4, 5, $9,89,90,91,96,97,98$, $102,109,110,111,126,138$
sources of their probable errors 142	Clarke, F. W 91,92
Airy, Sir Geo. B.......4, 7, 8,9, 12, 13, 14, 15, 17, 18, 34, 52, $\begin{array}{r}53,89,30,91,97,113,101,143\end{array}$	Coast Survey, ares projected by the United \qquad
Alembert, J. lo R. d' 58	Computations, how made
Algebraic notation	Comstock, Gen. C. B 143
Angle of the vertical, formula for.............. 139	Concluding remarks 142
Anomalistic month, length of 16	Conditional equations, general forms of 56
Asten, E. von 34, 35	Constants, desiderata for improvenuent of astro-
Asteroids, solar parallax from observations of... 51	nomical.................... 145
Anthorities, mode of citing 1,146	Copeland, Ralph 35
Auwers, A24, 25, 20	Cornu, A......................... $29.23,30,33,89,90$
Ayrton, W. E.................................. 135	Corrections by adjustment, numerical valnes of. 68,108 Cruls, L .. 52,53
Backlund, 0 34	
Baille, J. B... 89,90	D'Alembert, J. le R 58
Bailly, J. S................................. 28	Damoiseau, M. C. T. de.......................... 13, 20
Baily, F... . $89,90,97$	Darwin, Geo. H $92,113,114,115,118,119$
Baird, Maj. A. W.............. 113, 114, 115, 118, 119	Day, length of sidereal 10,139
Ball, L. de 25	Delambre, J. B. J 3, 28, 34, 52
	Delaunay, Ch 17, 18,60, С2
Bessel, F. W.......4, 13, 23, 24, 25, 34, 35, 36, 86, 87, 93, 137	Density of the Earth 89,139
Bibliography..................................... 146	Desiderata for improvenent of astronumical con-
Biot, J. B .. 6,8	stants....................................- 145
Bolto ... 24	Distances of the Sun and Moon. See unter Sun
13ond, G. P............ 35 . 36	and Moon.
Bond, W. C....................................... 51,54	istances of Suu and Moon, formula for probablo 134
Borda, J. C 6,7	
Borenens, H. G................................. 97	Downing A \qquad $25,26,27,51,54$
Bonguer, P...................................... 3, 89, 90	Drever, J. L. E
Bouvard, A 34,35	
Bradley, Jas23, 24, 25, 26, 44, 51, 101	Du Séjour, D................................... 52
Breen, II... 21	
Brinkley, John 25,26	
Biirg, J. T 101	Earth, centrifugal force at surface of............
13nrekhardt, J. C............................... $20,34,101$	density, flattening, and moments of inertia 89
Busch, A. L.................................... 25,26	observed mean density of 8. . 8 , 139
	observed surface density of 91, 139
	Le Gendre's law of density of iuterior of 95
Campboll, James 19	adjusted ralue of occeutricity of........... 133
Carlini, r'.................................89, 80,91	adjusted value of flattening of......110, 111, 133, 138
Cassini, J. D 51	flattening of, found from perturbatious of
Cavendish, II 89,90	the Moon 93

Earth, etc.-Continued.flattening of, Hansen's formnla for finding,from perturbations of the Moon...........flattening of, Pontecoulant's formula forPago.
finding, from perturbations of the Moon.Falues of the dlattening of, found ly varions100
authors, from perturbations of the Moon.nutation92
flattening of, found by various anthoriticsfroun pendulum experiments.$.97,137,138$
mucertainty respecting the fattening of.... 1.12
nucertainty in tho fattcuing of, and its effect upon the other coustants. 102
mass of. $34,42,4!$
arljusted mass of

\qquad
$73,10 _, 111,13: 3,140$
general expression for adjusted mass of 107
moments of inertia of $93,99,100,101,102,13!$
table of precessional moment of intertia of,according to varions authors.93
lmar inequality of motion of 19
formnla for lnnar inequality of motion of. 62
arljusted value of lnnar inequality of mo
tion of $.73,108,111,13: 3,140$
eccentricity of orbit of 11, 140
perturbations of plane of orbit of 74
motion of perigee of 45
perturbatious of, br Mars. 45
perturbations of, by Venus. 45
formula for radius of. 139
size and figure of. $3,109,133,136,13$
quadrant, formula for length of 13.
quadrant, length of $13: 3,133$
Eastmau, J. R 51, 54
Eecentricitr, of the Earth 138
of the Earth's orbit 11, 140
of the Moou's orbit 18,140
Ec:liptic, obliquity of $2,7!, 80,86$
perturbations of plane of 74
Electric constant, v 13.5
Encke, J. F 5,53
Euler, Lemhard 52
Eulerian mutation, periorl of 14.)
Exner, Franz 1:35, 136
Ferrel, W'm $112,113,114,115,116,11 \%, 11{ }^{2}, 119$
Ferrer, J. J. de 52
Finlarson, H. P 112
Fischer, A. 97, 136
Fizcan, H. L 29, 33
Flamstead, John51
Flattening of the Earth, found from pendulumexperiments, according to varions authori-
ties $97,137,138$ 93
found from 0.$)$
uncertaints respecting 142
Forlines, (r 30, 33
Foncault, L 29, 33
Frisby, Edgar 146
Galle, J. G $51,54,55$
Geodetic formulæ $3,5,10.4,109,134$
Gill, Darid Page.
Gilliss, Jas. M 1, 54, 55 1, 54, 55
51, 54Giulio, Chas. I.
89, 90Glascuapp, S
22Gould, 13. A
51,54Gravity, acccleration by
3.,Gyldén, J. A. H
Haerittl, E. von 34, 35
Hall, Λ saph. 4, 146
Ilall, Asaph, jr. 35, 36
Hall, Maxtell 51,54
IIansen, P. А...10, 11, 12, 13, 15, 16, 1\%, 1R, 19, 34, $37,: 38,61$, $62,78,80,86,87,93,93,100,101,102,142$
llarkness, W'm 53, 91
Harmonic analysis of the tides, notation userl by varions authors in the 114
ITaughton, S. 89,112
Helmert, F. R................... $8,9,97,102,110,126,142,143$
ITenilersou, Thos. $20,21,26,51,54$
Herschel, Sir F. W 35
Hill, Geo. W $1: 36$
Himsterlt, F 135
Hind, J. R 35
Hockin, C. 135
IIolden, E. S 35, 36
llorusly, Thomas 52
Ilorrox, Jeremiah 44
IIntton, Charles 89, 90
Inclination of the Moon's orlit 18,140
Iudian are, eflect of, on computed length of the Earth's polar semicliameter 143
Introduction 1
James, Sir ITenry $89,90,91$
Jolly, Ph. rou. 89, 90
Jupiter, mass of. $.34,35,42,140$
Kilometer, length of 3
King, W. F. 135,130
Kilemenčič, Ignaz 13.)
Kohlranseh, R. H. A 135, 136
Krueger, A. 34, 35)
Kiistucr, F 26, 27
Lacaille, N. L. de $20,: 1$
La Comlamine, C. M. de. $3,89,90$
La Grange, J. L. $33,34,35$
Lake Survey, ares measured ly the Unitch States 143
Lalaude, J. J. le F. de. 24. 12
Lamont, J 35
La Place, P. S. de.............. $6,8,34,3 \overline{5}, 86,87,93,94,98$,99, 101, 112.113
Lassell, W 35, 36
Latitude, period of variation of 145
Least siguare adjustment, gencral formula for the 64, 106, 122
a more comprehensive 121
Le G̈eudre, A. M.....................92, 94, 95, 96, $98,102,143$Le Gendre's law of clensity of the interior of theEarth95
Longth, relations betweon standards of

Page.

Le Vorricr, U. J ... 10, 11, 12, 19, 22, 34, 35, 36, 40, 41, 42, 44, $45,73,7.1,75,76,78,79,80,86,87,93,94$

Lévy, M

98Lexell, A. J [2
Light equation, tho 28
aljusted valuo of.

$73,108,111,133,14:$
Light, observed velocity ofadjusted valne of velocity of......73, 108, 111, 133, 14:
Lindenan, B. vou $26,27,34$
Lindluagen, D. G 26, 27
Linulsay, Lord 51,51
Lipschitz, R 98
Luhbock, Sir J. W. 112
Linar inequality of Earth's motion 19inequality of the Earth's motion, adjustedvalue of.-.............................73, 108, 111, 1:33, 140parallax..-......-------.-............................. 20parallax, adjusted value of........73, 103, 111, 13:3, 140
Luui-solar precession. Sce under Precession
Liludabl, G $25,26,27$
Maclear, Sir Thomas 26. 27
Main, lobert $25,26,27$
Mitrs, mass of $.34,3.5,42,140$
motions of its porihelion, eccentricity, inclination and nodo43
position of, in 167: 44
solar parallax from observations of 51
Marth, A 35, 36
Maskelyno, Nevil $23,52,89,90,101$
Mass of Moon, formula for $60,105,12:$
(See Moon.)
Masses of the planots $33,42,4!, 140$
(Sec under nane of each planet.)
formula for changes in, on account of cor-roctions by adjusturent.68, 107
formulas for probable error of 49 107
Mathion, C. L. 6, 8
Maxwell, Jannes Clerk 135,136
M'Kichian, Dugald 135,136
Mean density of the Earth $89,13!$
Méchain, l'. F. A 3
Bendenhall, T, C 89,90
Morcury, lougitude of node of 36
mass of $.33,42,49$
gencral expression for adjustel mass of. 107
adjusted mass of -73, 108, 111, 133, 140
motion of node of 40
Moter, length of 3
Michelson, A. A. 29, 30, 33
Mïllor, A 34, 35
Moments of inertia of the Earth. ..93, 99, 100, 101, 102, 139
Month, length of 12,139
anomalistic 16
nodical 16
sidereal 15,139
synodical 16,139
tropical 16
Moon, distance of $73,108,110,111,133,140$
formula for probable crror of distance of. . . 7: , 13eccontricity of orbit ot............................ 18,140inclination of orlit of............................. 18,140adjusted mass of $108,111,133,140$mass of, from observations of the tides.. 11:), 118, $1: 1$

Moon, etc.-Continued.
exprossions for computing mass of, from
diurual tidal oscillations 11.), 116, 117
oxprossions for computing mass of, fromsemi-
diurnal tidal oscillations. 115, 116, 117
mean sidereal motion of.......................... $1: 3$
motion of notlo of $16,1.10$
parallactic merpuality of 18
formula for parallactic incrpality of 60
adjusted value of parallactic inerguality of... 7:3, 108,
$111,1: 33,141$
parallax of
20)
auljusted value of parallax of73, 10 $2,111,13: 3,140$

Neison, E
19
Noptune, 1bass of55, 12, 110
Nu世comb, Simion.. 12, 13, 14, 15, 16, 17, 1^19, 20, 23, 30, 30, 3 , $34,355, \mathbf{v}^{\prime}(6,51,54,61,62,135$
Newto11, Sir Isaac .. $34,35,112$
Nicolai, F. B. G .. 34
Norle, motion of Moon's................................. . . . 16,141
Nollical month, length of-.................. 16
Notation, key to algelsaic. .-......................... $\quad 1$
Notation of various anthors for harmonic antil-
ysis of the tides 114
Nutation, constant of.................................... 25
formulie for alljusted values of 79, 141
formmla for, in terms of tho precession and linar parallax
$60,105,12$
Dr. Peters's formula for .-. - . - . - . . .-. 87
arljusted valuo of73, 108, 111, 133, 141
period of Euleriau 145
Nyrén, Magnus........................23, $24,25,26,27,137,133$

Obliquity of ecliptic...........................22, $79,80,86,141$
Obrecht, A... 53,54
Observed quantitics, valucs of $68,106,1: 18,133$
Olufsen, C. F'. R..........................10,11,20, 21, $34,37,38$
1'arallactic inequality of tho Moon's motion 18
l'arallactie inequality of the Moon, adjusted value of $73,103,111,133,141$
Parallax. Sce Solar Parailax, and Linar parallax.
Paris line, length of3

Pancker, M. G. von..................................... 97
Pechmann, E.. 89, 90
Poirce, Benjamin 35,120
Pendulum, formula relatiug to...6, 7, 9, 56, 97, 10:3, 134, 137
leugth of the seconds $6,133,136$
adjnsted length of tho sccouds 139
Perry, Johu... 135
Perturbations. See under Mcrcury, Venus,
Earth, and Mars.
Peters, C. A. F..........................25, 26, 27, 86, $87,93,137$

l'icard, J... 44

Plana, Jean. .. $34,91,9$ 5
Plauets, masses of................................... $33,42,49,140$
Planmav, A
Playfair, John. $89,90,91$
Poincaŕ́, II .. . 95
Poisson, S. D..
Pontécoulant, G. do $8,92,100$
Pound, James
Page.
Powalky, C $34,52,53$
Poynting, J. H 89, 90
Prati, John H 136
Precession, coustaut of 22
formula for changes in the luni-solar, on ac- count of corrections by adjustucut 69
additional formula for 73
algebraic formula for changing tho funda- mental equinox and ecliptic 30, 85
adjusted value of.
-3, 108, 111 33, 141
aud nutation, numerical formule for 79, 141
complete numerical formula for, applicablo to any equinox or ecliptic 86,141
table of values of, given by various astrou- otuers 87
Probable errors, of observed quantities, corrected values of 70,132
of the adjnsted quantities, constants neces- sary for finding 127
of adjusted quautities, sources of 142
of planetars masses, method of computing. 49, 107
Puiseus, V. A 52, 53
Reich, \mathbf{F} 89, 911
Results, summary of 133
Richardson, W 26
Richer, J 44
Roberts, Edward 113, 114
Robinson, T. R 25
Roche, E 93
Roemer, O. 44
Rosa, E. B 135
Rosse, Earl of 35
Rothwau, R. W 34
Rowlaud, H. A $13 \overline{5}$
Sabine, Gen. Sir Edwand 6,8,9
Safford, 'T. H 35
Saigcy, J. F $8,9,89,90$
Saturn, mass of $35,42,140$
Schjellerup, I. C. F. C. 23, 24
Schubert, Gen. T. F. de 4
Schur, W 34, $3 \overline{5}$
Schwoizer, K. G 26
Searle, G. F. C 135
Seconds pendulum, lengtla of the 6, 133, 136
adjusted leugth of the 139
Semi-diurnal tidal oscillations, Ferrel's expres sions for 115
Serret, J. A 32, 59, 77, ร9, 92, 93
Shida, R 135
Short, James 2
Sidereal day, leugth of 10, 139
month, length of 15year, lengilh of10
Solar parallax, formula for, in terms of the Earth'smass7, 58, 105, 12:
formula for, in terms of P, L, E and M $63,1 \vartheta$
formula for, in terms of P, Q, E and M 61. 12:2
formula for, iu terms of V and α 63, 1:2Solar parallax, etc-Continued
Page.
formula for, in terms of V and 0 63, 122
trigonometrical determinations of 51,54
from observations of Asteroids 51
from observations of Mars 51
from photographic observations 53
from transits of Veuus 51, 138
adjnsted value of $3,108,111,133,140$
Standards of lencrth, relations between 3
Sterneck, R. vou 89,90, 91
Stockwell, John N 88
Stokes, Sir Geo. G 100
Stone, E. J 19, 21, 25, 51, 52, 53, 54, 58, 5 J
Struve, F. G. W $25,26,27$
Struve, H 35
Struve, Ludwig 24
Struve, Otto $23,24,35,86,87$
Sun and Moon, ratio of meau sidereal motious of. 17, 139
Sun, distauce of శ3, 108, 110, 111, 133, 140
Sun, parallax of. See Solar parallax.
formula for probable error of distance of 72, 134
adjusted valne of parallax of $\ldots . .73,103,111,133,140$equation of center45
Summars of results 133
Supplementary data 136
Surface density of the Earth 91,13!
Syuodical month, length of 16, 139
Tait, P. G 94
Taylor, T. G 51,54
Thomson, J. J 135
Thomson, Sir Wm $34,113,135,136$
Tidal oscillations, Ferrel's expressions for thedinrnal.114
Ferrel's expressions for the semi-liurnal.... 115
Tidal observations at thirts-four different sta- tions, Moou's mass computed from 118,121
Tides, notation used by various authors in the harmonic analysis of. 114
Tisseraud, F 34, 44,98
Torld, D. P 53, 54
Toise, length of. 3
Transits of Venus, solar parallax from 51, 138
Transit of Veuns Commission, United States 38,54
Tropical month, leugth of 16
Tropical year, length of 10
Tupman, G. L 52,53
Unferdinger, F $7.8,9,97,143$
Units of length, relations between 3
Urauss, mass of $35,42,140$
r, the electric constaut 135
Velocity of liglit, olserved value of 29
adjusted value of 42
Venus, longitudes of 4.4
mass of $34,42,49$
adjusted mass of

\qquad 140
general expression for atjusten mass of 107
longitude of node of 37
motion of node of. 40
Vertical, formula for angle of 139

	INISEX.		169
Wagner, A	$\begin{aligned} & \text { Page. } \\ & 26,27 \end{aligned}$	Wurm, J. F'.	
Weber, W. E.	135, 136		
Weisse, Maximilian	23		
Wilsing, J	89, 90	Year, length of the sidereal.	10, 139
Winnecke, A	51,54	length of the tropical	111, 1:59
Woolward, R. S...t.	146	Youngr, James.	:30, 33
6987-12			

[^0]: * In its original form this paper was a private investigation, and as such was read before the Philosophical Society of Washington on October $1_{3}, 1888$. Since then it has been taken up in connection with my official work, to which it is closely related, and many important details have been added.-W. H.

[^1]: *17.p.220. t19, p.116. \ddagger 21, p. 765 . \& 21, p. 771. ||26, p. 31. |i 22, p. 39.

[^2]: ${ }^{*} 7$, T. 2 , livre 3, chap. 5, sec. 42 . $\dagger 32$, p. $332 . \quad \ddagger 20$, p. $575 . \quad$ \& 35, p. 352.

[^3]: ${ }^{*} 3^{8}$, p. 36. †10, T. 2, p. 466 . $\ddagger 17$, p. 230. द 15, T. 1, p. 367 ; 34, pp. $32-33$, and 16, T. 2, p. $464 . \quad| | 39$, p. 316.

[^4]: ${ }^{*} 52$, T. 2, p. 914 . Compare also 63 , T. 1, pp. 664 and 674
 $\dagger 44,1.13$. $\ddagger 62, \mathrm{p} .69$.

[^5]: * 44, p. 21, and 45, p. 27. $\ddagger 62$, p. 76 .
 †52, T. 2, p, 802. \quad 64, p. $36 . \quad$ 44, p. 16.

[^6]: *6,T.1,Tables astronomiques, p. 23 S. $\ddagger 127, \mathrm{p}$. vij. $|\mid 3, \mathrm{~T} .3, \mathrm{p} .502$.

[^7]: *132, p. $92 . \quad \dagger 135$, p. 224.
 $\ddagger 130, \mathrm{p} .178$.
 ${ }_{8}{ }^{2}$ II, p. A. 29 S.

[^8]: *141, p. 269.

[^9]: *1S71/2, pp. 11 S-119.

[^10]: * 267 , twenty on p. 450 and forty-one on P. 453

[^11]: * $4 \mathbf{I}, \mathrm{p} .47$. $\quad \dagger$ Strictly speaking, it should be the difference of true longitudes of the Sun and Moon.
 $\ddagger 52$, T. 2, p. 917, eq. (27). \&62, p. 105.

[^12]: ${ }^{*} 7$, T. 3 , liv. 6, clap. 16 , converted into sexagessimal seconds ly Bessel, 1, p. 285 , and $11 / 2, \mathrm{p}$. iv. $\dagger 11 / 2, \mathrm{p} . \mathrm{v}$.
 $\ddagger 109$, pp. 190 and 195.

 \|8 8, T. 2, p. 174, and T. 4, p. 10.4.

[^13]: * 28 1, p, 276 and 321, vol. I, pp. 225, 226.
 $\dagger 294$, p. 408; 321, vol. 2, p. 117; 7, T. 2, liv. 5, chap. 1, \% 14 and T. 5, liv. 11, chap. 2, \% 6; 10, T. 2, p. 472; 17, p. 235; $241 / 2$; $151 / 2$, pp. III and 149; 13, pp. 83-87; 14, Teil 2, p. 487.
 \ddagger 11, vol. 1, part 2, pp. 407 and 414 .

[^14]:

[^15]: * $451 / 2$, col. 314 .
 $\dagger 572 / 3, \mathrm{P}^{2}$ 225. La Place was a member of the Commission appointed by the French Burean of Longitudes to examine BURCKHARDT'S tables, previous to their official adoption.

[^16]: * 323 , p. 360^{*}, art. 455 .
 \dagger The basis of this inethod is very clearly explained by AIRy, $323, \mathrm{pp} .3^{60^{*}}, 379^{*}$, and $3^{\text {S6 }}$, articles $455,53^{6}$, and 555 .
 $\ddagger 327$.

 3. Compare 353, $18 S_{3}$, p. S6, and 33S, p. 282.
 $6957-3$
[^17]: *This c is identical with the I -F of equations (130), (345), and (35.4) of his Tidal Rescarches. (3.36, ph. 75, 1SS, and 195.)

[^18]: *The Lake Survey ares were not published by (ien. Constouk until two years after Charke's spheroid of isSo. The are of parallel is in latitude 42°, and therefore very favorably situated for determining ε.
 $\dagger 13, \mathrm{pp} .310-31 \mathrm{r}$.

